转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/ AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符"/"和"\".如: X=A\B表示求矩阵方程AX=B的解: X=B/A表示矩阵方程XA=B的解. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理. 如果矩阵A不是方阵…
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合呢?我们采用回溯法 矩阵1: 先假定选择第1行,如下所示: 如上图中所示,红色的那行是选中的一行,这一行中有3个1,分别是第3.5.6列. 由于这3列已经包含了1,故,把这三列往下标示,图中的蓝色部分.蓝色部分包含3个1,分别在2行中,把这2行用紫色标示出来 根据定义,同一列的1只能有1个,故紫色的…
出处:http://www.cnblogs.com/grenet/p/3145800.html 精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合呢?我们采用回溯法 矩阵1: 先假定选择第1行,如下所示: 如上图中所示,红色的那行是选中的一行,这一行中有3个1,分别是第3.5.6列. 由于这3列已经包含了1,故,把这三列往下标示,图中的蓝色部分.蓝…
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm…
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值. TSP问题是一个组合优化问题.该问题可以被证明具有NPC计算复杂性.TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancing Links)算法求解数独 在前文中可知,舞蹈链(Dancing Links)算法在求解精确覆盖问题时效率惊人. 那利用舞蹈链(Dancing Links)算法求解数独问题,实际上就是下面一个流程 1.把数独问题转换为精确覆盖问题 2.设计出数据矩阵 3.用舞蹈链(Dancing Links)算法…
1. HMM模型参数求解概述 HMM模型参数求解根据已知的条件可以分为两种情况. 第一种情况较为简单,就是我们已知DD个长度为TT的观测序列和对应的隐藏状态序列,即{(O1,I1),(O2,I2),...(OD,ID)}{(O1,I1),(O2,I2),...(OD,ID)}是已知的,此时我们可以很容易的用最大似然来求解模型参数. 假设样本从隐藏状态qiqi转移到qjqj的频率计数是AijAij,那么状态转移矩阵求得为: A=[aij],其中aij=Aij∑s=1NAisA=[aij],其中ai…