1.强化学习 @ 目录 1.强化学习 1.1 强化学习原理 1.2 强化学习与监督学习 2.无监督学习 3.半监督学习 4.对抗学习 强化学习(英语:Reinforcement Learning,简称RL)是机器学习中的一个领域,是除了监督学习和非监督学习之外的第三种基本的机器学习方法. 强调如何基于环境而行动,以取得最大化的预期利益[1]. 与监督学习不同的是,强化学习不需要带标签的输入输出对,同时也无需对非最优解的精确地纠正. 1.1 强化学习原理 强化学习是从动物学习.参数扰动自适应控制等…
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分支.人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然.清晰的脉络.显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题.机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.计算复杂性理论等多门学科.…
引言: 最近和实验室的老师做项目要用到强化学习的有关内容,就开始学习强化学习的相关内容了.也不想让自己学习的内容荒废掉,所以想在博客里面记载下来,方便后面复习,也方便和大家交流. 一.强化学习是什么? 定义 首先先看一段定义:Reinforcement learning is learning what to do—how to map situations to actions—so as to maximize a numerical reward signal.感觉看英文的定义很容易可以了…
Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, there's a good chance it's divided into a unit on supervised learning and a unit on unsupervised learning. We certainly care about this distinction f…
网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工作,目前很热,许多直接研究网络表示学习的工作和同时优化网络表示+下游任务的工作正在进行中. 清华大学计算机系的一个学习组 新浪微博@涂存超 整理的论文列表:https://github.com/thunlp/NRLpapers,并一直持续更新着,里面详细的列举了最近几年有关网络表示学习(networ…
PU learning问题描述 给定一个正例文档集合P和一个无标注文档集U(混合文档集),在无标注文档集中同时含有正例文档和反例文档.通过使用P和U建立一个分类器能够辨别U或测试集中的正例文档 [即想要精确分类U或测试集中的正例文档和反例文档] 应用: 从多个无标注集中学习 从不可靠的反例数据中学习 发现测试集中的突发文档 发现异常值 基于PU-Learning的恶意URL检测 from:https://xz.aliyun.com/t/2190 基于PU-Learning的恶意URL检测 Ya-…
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务.然后,我们通过精细调参,来改进模型直至性能不再提升.尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好.具体来说,这些信息就是相关任务的监督数据.通过在相关任务间共享表示信息,我们的模型在…
获取当前日期的时间和上周五时间 var today=new Date();//获取当前时间var weekday=today.getDay();//获取星期几    var monday=new Date(1000*60*60*24*(1-weekday) + today.getTime());    //获取周一日期var friday=new Date(1000*60*60*24*(5-weekday) + today.getTime());//获取本周五日期 var lastFriday=…
<码出高效:Java开发手册>第四章学习记录,内容想当的多,前后花了几天的时间才整理好. https://naotu.baidu.com/file/e667435a4638cbaa15ebdf017d6b9b9c?token=c9d949e8316e5734…
本博客是针对周志华教授所著<机器学习>的"第11章 特征选择与稀疏学习"部分内容的学习笔记. 在实际使用机器学习算法的过程中,往往在特征选择这一块是一个比较让人模棱两可的问题,有时候可能不知道如果想要让当前的模型效果更好,到底是应该加还是减掉一些特征,加又是加哪些,减又是减哪些,所以借着对这一章内容的学习,希望可以在文末解决这个疑惑. 目录 子集搜索与评价 子集搜索(subset search) 子集评价(subset evaluation) 过滤式选择 包裹式选择 嵌入式…