Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Feng Yu, Q. Liu, Shu Wu, Liang Wang论文来源:2020, ArXiv论文地址:download 代码地址:download Abstract 在本文中,作者提出了一个利用节点级对比目标的无监督图表示学习框架.具体来说,通过破坏原始图去生成两个视图,并通过最大化这两个视图…
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chakib Fettal, Lazhar Labiod,Mohamed Nadif论文来源:2021, WSDM论文地址:download论文代码:download 1 Introduction 一个统一的框架中解决了节点嵌入和聚类问题. 2 Method 整体框架: 2.1 Joint Graph Rep…
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qimai Li, Xiao-Ming Wu论文来源:2019, IJCAI论文地址:download 论文代码:download 1 Introduction 关于GNN 是低通滤波器的好文. 2 Method 2.1 Graph Convolution 2.1.1 Basic idea 为正式定义图…
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoqi Fan. Yuxin Wu. Saining Xie. Ross Girshick 论文来源:arXiv 论文来源:https://github.com/facebookresearch/moco 1 主要思想 文章核心思想是使用基于 Contrastive learning 的方式自监督的训练一个图片表…
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning论文作者: Kaize Ding .Yancheng Wang .Yingzhen Yang.…
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas论文来源:2021, WWW论文地址:download 论文代码:download 1 介绍 本文核心贡献: 使用孪生网络隐式实现对比学习: 本文提出四种特征增强方式(FA): 2 相关工作 Graph Neural Networks GCN…
论文标题:DEEP GRAPH INFOMAX 论文方向:图像领域 论文来源:2019 ICLR 论文链接:https://arxiv.org/abs/1809.10341 论文代码:https://github.com/PetarV-/DGI 摘要 DGI,一种以无监督的方式学习图结构数据中节点表示的一般方法.DGI 依赖于最大限度地扩大图增强表示和目前提取到的图信息之间的互信息--两者都是使用已建立的图卷积网络体系结构导出的.对于图增强表示,是根据目标节点所生成的子图,因此可以用于下游节点的…
论文信息 论文标题:Deep Graph Clustering via Dual Correlation Reduction论文作者:Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, En Zhu论文来源:2022, AAAI论文地址:download 论文代码:download 1 介绍 表示崩塌问题:倾向于将所有数据映射到相同表示.     2 方法 2.1 整体框架     该框架包括两个模块…
论文信息 论文标题:Iterative Graph Self-Distillation论文作者:Hanlin Zhang, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, Eric P. Xing论文来源:2021, ICLR论文地址:download 论文代码:download 1 Introduction 创新点:图级对比. 2 Method 整体框架如下: 2.1 Iterative Graph Self-Distil…
论文信息 论文标题:Self-Attention Graph Pooling论文作者:Junhyun Lee, Inyeop Lee, Jaewoo Kang论文来源:2019, ICML论文地址:download 论文代码:download 1 Introduction 图池化三种类型: Topology based pooling: Hierarchical pooling:(使用所有从 GNN 获得的节点表示) Hierarchical pooling: 关于 Hierarchical p…