ResNet50的猫狗分类训练及预测】的更多相关文章

目录 1.预备工作 1.1 数据集准备 1.2 数据预处理 2.训练 2.1 模型 2.2 定义训练 2.3 训练 3.预测 4.参考文献 声明:这是我的个人学习笔记,大佬可以点评,指导,不喜勿喷.实现过程参考自夜雨飘零的博客以及实现代码.框架是百度开源的框架paddlepaddle. 1.预备工作 ​ 这是我上学期一直没有去填补的坑,之前想通过传统机器学习方法来实现,不过没做完.暑假难得回一次家,所以我想该把我没做完的坑填完吧. ​ 代码到现在为止已经写完了,不过还是存在坑的,比如哈士奇它会识…
首先先导入所需要的库 import sys from matplotlib import pyplot from tensorflow.keras.utils import to_categorical from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Dense from keras.…
笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正好有做过猫狗大战数据集的图像分类,做好的数据都还在,二话不说,开撸. 既然是VGG16模型,当然首先上模型代码了: def conv_layers_simple_api(net_in): with tf.name_scope('preprocess'): # Notice that we inclu…
贴一张自己画的思维导图  数据集准备 kaggle猫狗大战数据集(训练),微软的不需要FQ 12500张cat 12500张dog 生成图片路径和标签的List step1:获取D:/Study/Python/Projects/Cats_vs_Dogs/data/Cat下所有的猫图路径名,存放到cats中,同时贴上标签0,存放到label_cats中.狗图同理. train_dir = 'D:/Study/Python/Projects/Cats_vs_Dogs/data' def get_fi…
原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将图像复制到训练.验证和测试的目录 import os,shutil orginal_dataset_dir = 'kaggle_original_data/train' base_dir = 'cats_and_dogs_small' os.mkdir(base_dir)#保存新数据集的目录 tra…
kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对pytorch不甚了解,请点击这里),所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别. 深度学习的基础就是数据,咱们先从数据谈起.此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片. 我们从下…
去年研一的时候想做kaggle上的一道题目:猫狗分类,但是苦于对卷积神经网络一直没有很好的认识,现在把这篇文章的内容补上去.(部分代码参考网上的,我改变了卷积神经网络的网络结构,其实主要部分我加了一层1X1的卷积层,至于作用,我会在后文详细介绍) 题目地址:猫狗大战 同时数据集也可以在上面下载到. 既然是手把手,那么就要从前期的导入数据开始: 导入数据 #import sys, io #sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encodin…
参考:https://blog.csdn.net/weixin_37813036/article/details/90718310 kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对pytorch不甚了解,请点击这里),所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别.深度学习的基础就是数据…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
猫狗数据集的分为训练集25000张,在训练集中猫和狗的图像是混在一起的,pytorch读取数据集有两种方式,第一种方式是将不同类别的图片放于其对应的类文件夹中,另一种是实现读取数据集类,该类继承torch.utils.Dataset,并重写__getitem__和__len__. 先将猫和狗从训练集中区分开来,分别放到dog和cat文件夹下: import glob import shutil import os #数据集目录 path = "./ml/dogs-vs-cats/train&qu…