摘要:本文以aishell为例,通过对比实验为大家介绍transformer和LSTM语言模型. 本文分享自华为云社区<espnet中的transformer和LSTM语言模型对比---以aishell为例>,作者: 可爱又积极 . NLP特征提取器简介 - RNN和Transformer 近年来,深度学习在各个NLP任务中都取得了SOTA结果,我们先了解一下现阶段在自然语言处理领域最常用的特征抽取结构. 长短期记忆网络(LSTM) 传统RNN的做法是将所有知识全部提取出来,不作任何处理的输入…
一.实验背景 最近在考虑一个问题:“如果快速地向文件中写入数据”,java提供了多种文件写入的方式,效率上各有异同,基本上可以分为如下三大类:字节流输出.字符流输出.内存文件映射输出.前两种又可以分为带buffer及不带buffer. 二.实验目标 通过实验找出单线程场景下文件写入效率最高的方式,并量化各种文件写入方式在效率上的差距. 三.实验设计 为减少其他环节的影响,示例代码使用循环输出同一字符串多次的方式测试整个输出环节的耗时,通过耗时.服务器资源使用情况(cpu.内存使用)等指标评判各种…
Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势.而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率. 对比实验 资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程:如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率.所以我们根据实验对比不同场景的效率 操作…
寻找丢失的微服务-HAProxy热加载问题的发现与分析 原创: 单既喜 一点大数据技术团队 4月8日 在一点资讯的容器计算平台中,我们通过HAProxy进行Marathon服务发现.本文记录HAProxy服务热加载后某微服务50%概率失效的问题.设计3组对比实验,验证了陈旧配置的HAProxy在Reload时没有退出进而导致微服务丢失,并给出了解决方案. Keywords:HAProxy热加载.Marathon.端口重用 01…
预训练 先在某个任务(训练集A或者B)进行预先训练,即先在这个任务(训练集A或者B)学习网络参数,然后存起来以备后用.当我们在面临第三个任务时,网络可以采取相同的结构,在较浅的几层,网络参数可以直接加载训练集A或者B训练好的参数,其他高层仍然随机初始化.底层参数有两种方式:frozen,即预训练的参数固定不变,fine-tuning,即根据现在的任务调整预训练的参数. 优势: 1.当前任务数据量少,难以训练更多的网络参数,可以加载预训练的模型,然后根据当前的任务对参数进行fine-tuning,…
关于string的效率,众所周知的恐怕是“+”和StringBuilder了,这些本文就不在赘述了.关于本文,请先回答以下问题(假设都是基于多次循环反复调用的情况下):1.使用Insert与Format方法,哪个效率更高?2.Contains(value)与IndexOf(value)谁效率更高? 假如您对此2问不感兴趣或已非常了解,请忽略此文.另外本文将不对文中代码的实际用途做任何解释. <一> 首先看以下的使用场景 string str1 = "abc"; "…
我是一名java开发人员,hibernate以及mybatis都有过学习,在java面试中也被提及问道过,在项目实践中也应用过,现在对hibernate和mybatis做一下对比,便于大家更好的理解和学习,使自己在做项目中更加得心应手. 第一方面:开发速度的对比 就开发速度而言,Hibernate的真正掌握要比Mybatis来得难些.Mybatis框架相对简单很容易上手,但也相对简陋些.个人觉得要用好Mybatis还是首先要先理解好Hibernate. 比起两者的开发速度,不仅仅要考虑到两者的特…
Java在并发编程中进行使用java.util.concurrent.atomic来处理一些轻量级变量 如AtomicInteger AtomicBoolean等 .Net中则使用Interlocked来实现类似功能 Java中使用object的wait和notify方法来实现线程间的写作 .Net中可以使用Semaphore(信号量).mutex(互斥).和EventWaitHandle来实现 但是Semaphore类的构造函数需要指定初始入口数和最大入口数 msdn: mutex:当两个或多…
hibernate以及mybatis都有过学习,在java面试中也被提及问道过,在项目实践中也应用过,现在对hibernate和mybatis做一下对比,便于大家更好的理解和学习,使自己在做项目中更加得心应手. 第一方面:开发速度的对比 就开发速度而言,Hibernate的真正掌握要比Mybatis来得难些.Mybatis框架相对简单很容易上手,但也相对简陋些.个人觉得要用好Mybatis还是首先要先理解好Hibernate. 比起两者的开发速度,不仅仅要考虑到两者的特性及性能,更要根据项目需求…
神经结构进步.GPU深度学习训练效率突破.RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息. 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息.RNN最大特点,神经元某些输出作为输入再次传输到神经元,可以利用之前信息. xt是RNN输入,A是RNN节点,ht是输出.对RNN输入数据xt,网络计算得输出结果ht,某些信息(state,状态)传到网络输入.输出ht与label比较得误差,用梯度下降(Gradient Descent)和Back-Propag…