t-SNE 层次聚类】的更多相关文章

转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/6129425.html 本文是“挑子”在学习BIRCH算法过程中的笔记摘录,文中不乏一些个人理解,不当之处望多加指正. BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies,利用层次结构的平衡迭代归约和聚类)是由T. Zhang等人[1]于1996年为大量聚类设计的一种层次聚类方法. 1.聚类特征(Clustering Fea…
1.项目背景 在做交通路线分析的时候,客户需要找出车辆的行车规律,我们将车辆每天的行车路线当做一个数据样本,总共有365天或是更多,从这些数据中通过聚类来获得行车路线规律统计分析. 我首先想到是K-means算法,不过它的算法思想是任选K个中心点,然后不停的迭代,在迭代的过程中需要不停的更新中心点.在我们着这个项目中,此方案不能解决,因为我们是通过编辑距离来计算两条路线的相似度.可以参考(1.交通聚类:编辑距离 (Levenshtein距离)Java实现) 这篇文章了解一下编辑距离.当我们第一步…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
网上教程太啰嗦,本人最讨厌一大堆没用的废话,直接上,就是干! 网络爬虫?非监督学习? 只有两步,只有两个步骤? Are you kidding me? Are you ok? 来吧,follow me, come on! 第一步:首先,我们从网上获取图片自动下载到自己电脑的文件内,如从网址,下载到F:\File_Python\Crawler文件夹内,具体代码请查看http://www.cnblogs.com/yunyaniu/p/8244490.html 第二步:我们利用非监督学习的Hierar…
本文主要简述聚类算法族.聚类算法与前面文章的算法不同,它们属于非监督学习. 1.K-means聚类 记k个簇中心,为\(\mu_{1}\),\(\mu_{2}\),...,\(\mu_{k}\),每个簇的样本数为\(N_{i}\) 假设每个簇中的数据都满足分布\(N(\mu_{i},\sigma)\),即方差相同,均值不同的GMM. 则每一个样本点的分布函数为:\[\phi_{i}=\dfrac{1}{\sqrt{2\pi\sigma^2}}exp(-\dfrac{({x_{i}-\mu})^2…
层次聚类是另一种主要的聚类方法,它具有一些十分必要的特性使得它成为广泛应用的聚类方法.它生成一系列嵌套的聚类树来完成聚类.单点聚类处在树的最底层,在树的顶层有一个根节点聚类.根节点聚类覆盖了全部的所有数据点.层次聚类分为两种: 合并(自下而上)聚类(agglomerative) 分裂(自上而下)聚类(divisive) 目前 使用较多的是合并聚类 ,本文着重讲解合并聚类的原理. Agens层次聚类原理 合并聚类主要是将N个元素当成N个簇,每个簇与其 欧氏距离最短 的另一个簇合并成一个新的簇,直到…
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内…
层次聚类 原理 有一个讲得很清楚的博客:博客地址 主要用于:没有groundtruth,且不知道要分几类的情况 用scipy模块实现聚类 参考函数说明: pdist squareform linkage fcluster scipy.spatial.distance.pdist:计算点之间的距离,返回的是一个压缩过的距离矩阵,即一行距离数据,减少了方阵中数据重复占用的空间. scipy.spatial.distance.squareform:距离矩阵的方阵与压缩矩阵相互转换函数 scipy.cl…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
层次聚类 stats::hclust stats::dist    R使用dist()函数来计算距离,Usage: dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) x: 是样本矩阵或者数据框 method: 表示计算哪种距离 euclidean              欧几里德距离,就是平方再开方. maximum              切比雪夫距离 manhattan            绝对…
-------------------------------- 不管是GMM,还是k-means,都面临一个问题,就是k的个数如何选取?比如在bag-of-words模型中,用k-means训练码书,那么应该选取多少个码字呢?为了不在这个参数的选取上花费太多时间,可以考虑层次聚类. 假设有N个待聚类的样本,对于层次聚类来说,基本步骤就是: 1.(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度: 2.寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了…
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一个大类.不停的合并,直到合成了一个类.其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等.比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离. 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerat…
scipy cluster库简介 scipy.cluster是scipy下的一个做聚类的package, 共包含了两类聚类方法: 1. 矢量量化(scipy.cluster.vq):支持vector quantization 和 k-means 聚类方法 2. 层次聚类(scipy.cluster.hierarchy):支持hierarchical clustering 和 agglomerative clustering(凝聚聚类) 聚类方法实现:k-means和hierarchical cl…
假设有N个待聚类的样本,对于层次聚类来说,步骤:        1.(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度:        2.寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了一个):        3.重新计算新生成的这个类与各个旧类之间的相似度:        4.重复2和3直到所有样本点都归为一类,结束      整个聚类过程其实是建立了一棵树,在建立的过程中,可以通过在第二步上设置一个阈值,当最近的两个类的距离大于这个阈值,则认为…
参考博客: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ 层次聚类理论知识 类从多减少的过程. 1.定义样本间的距离,类与类之间的距离 2.将每个样本当作一类,计算距离最近的两类,合并为新类 3.一点一点做,直到所有成为一类.   基本步骤: 1.数据变换:      中心化:demean      标准化:deStd      极差标准化:deMean /…
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics import adjusted_rand_score from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7): X, labels_true = make_b…
层次聚类(hierarchical clustering)可在不同层次上对数据集进行划分,形成树状的聚类结构.AggregativeClustering是一种常用的层次聚类算法.   其原理是:最初将每个对象看成一个簇,然后将这些簇根据某种规则被一步步合并,就这样不断合并直到达到预设的簇类个数.这里的关键在于:如何计算聚类簇之间的距离?   由于每个簇就是一个集合,因此需要给出集合之间的距离.给定聚类簇Ci,CjCi,Cj,有如下三种距离: 最小距离:   dmin(Ci,Cj)=minx⃗ i…
BIRCH:Balanced Iterative Reducing and Clustering Using Hierarchies 算法通过聚类特征树CF Tree:Clustering Feature True来执行层次聚类,适合于样本量较大.聚类类别数较大的场景.…
层次聚类hierarchical clustering 试图在不同层次上对数据集进行划分,从而形成树形的聚类结构. 一. AGNES AGglomerative NESting:AGNES是一种常用的采用自底向上聚合策略的层次聚类算法.…
几张GIF理解K-均值聚类原理 k均值聚类数学推导与python实现 前文说了k均值聚类,他是基于中心的聚类方法,通过迭代将样本分到k个类中,使每个样本与其所属类的中心或均值最近. 今天我们看一下无监督学习之聚类方法的另一种算法,层次聚类: 层次聚类前提假设类别直接存在层次关系,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树.在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点.创建聚类树有聚合聚类(自下而上合并)和分裂聚类(自上而下分裂)两种方法,分裂聚类一般…
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性,同一性(与自身距离为0),对称性,直递性(三角不等式).包括欧式距离(二范数),曼哈顿距离(一范数)等等. 1.KNN k近邻(KNN)是一种基本分类与回归方法. 其思路如下:给一个训练数据集和一个新的实例,在训练数据集中找出与这个新实例最近的k  个训练实例,然后统计最近的k  个训练实例中所属类…
使用 scipy.cluster.hierarchy.linkage进行层次聚类 from scipy.cluster.hierarchy import dendrogram, linkage,fcluster from matplotlib import pyplot as plt X = [[i] for i in [0.5, 1.5, 4.5]] # X = [[1,2],[3,2],[4,4],[1,2],[1,3]] Z = linkage(X, method= 'single') d…
层次聚类(Hierarchical Clustering) 一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成.如下图所示: 二.合并方法 在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计算方法常用的有三种: 1.单连接聚类(Single-linkage clustering) 在单连接聚类中,两个类间的距离定义为一个类的所有实例到另一个类的所有实例之…
聚类算法实践(一)--层次聚类.K-means聚类 摘要: 所谓聚类,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段.比如古典生物学之中,人们通过物种的形貌特征将其分门别类,可以说就是 一种朴素的人工聚类. ... 所谓聚类,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段.比如古典生物学之中,人们通过物种的形貌特征将其分门别类,可以说就是 一种朴素的人工聚类.如此,我们就可以将世界上纷…
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 下面这样的结构应该比较常见,这就是一种层次聚类的树结构,层次聚类是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个聚类的根节点. 创建这样一棵树的方法有自底向上和自顶向下两种方式. 下面介绍一下如何利用自底向上的方式的构造这样一棵树: 为了便于说明,假…
可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ knn模型的三要素:距离度量(如何计算样本之间的距离).k值的选择(选择要判断的目标周围的几个样本去判断类别).分类决策规则(如何决定目标的类别) 图中所谓没有明显的训练过程就是给定目标样本,只需要直接计算其周围K个样本的类别,通过分类决策规则判断出来目标样本的类别就可以,不需要预先训练一个判别模型.…
凝聚法分层聚类中有一堆方法可以用来算两点(pair)之间的距离:欧式,欧式平方,manhattan等,还有一堆方法可以算类(cluster)与类之间的距离,什么single-linkage.complete-linkage.还有这个ward linkage.(即最短最长平均,离差平方和) 其他的好像都挺好理解,就是最后这个有点麻烦... 这个方法说白了叫离差平方和(这是个啥?).是ward写那篇文章时候举的一个特例.这篇文章是说分层凝聚聚类方法的一个通用流程.在选择合并类与类时基于一个objec…
data=iris[,-5]dist.e=dist(data,method='euclidean')model1=hclust(dist.e,method='ward') #分3类result=cutree(model1,k=3)mds=cmdscale(dist.e,k=2,eig=T)x = mds$points[,1]y = mds$points[,2]library(ggplot2)p=ggplot(data.frame(x,y),aes(x,y))p+geom_point(size=3…
#!/usr/bin/python # coding:utf-8 from PIL import Image, ImageDraw from HierarchicalClustering import hcluster from HierarchicalClustering import getheight from HierarchicalClustering import getdepth import numpy as np import os def drawdendrogram(clu…
from numpy import * class cluster_node: def __init__(self,vec,left=None,right=None,distance=0.0,id=None,count=1): self.left=left self.right=right self.vec=vec self.id=id self.distance=distance self.count=count def L2dist(v1,v2): return sqrt(sum((v1-v…