caffe生成deploy.prototxt文件】的更多相关文章

参考: http://blog.csdn.net/cham_3/article/details/52682479 以caffe工程自带的mnist数据集,lenet网络为例: 将lenet_train_test.prototxt文件进行一些修改即可得到lenet.prototxt文件 头部: 去除训练用的输入数据层, layer { name: "mnist" type: "Data" top: "data" top: "label&q…
本文参考博文 (1)介绍 *_train_test.prototxt文件与 *_deploy.prototxt文件的不同:http://blog.csdn.net/sunshine_in_moon/article/details/49472901 (2)生成deploy文件的Python代码:http://www.cnblogs.com/denny402/p/5685818.html *_train_test.prototxt文件 这是训练与测试网络配置文件 *_deploy.prototxt文…
本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt 该文件是在测试时使用的文件. 区别: 首先deploy.prototxt文件都是在train_val.prototxt文件的基础上删除了一些东西,所形成的. 由于两个文件的性质,train_val.prototxt文件里面训练的部分都会在deploy.prototxt文件中删除. 在train_v…
1.开头不同 对train_val.prototxt文件来说,开头部分定义训练和测试的网络及参数 对deploy.prototxt文件来说,开头部分定义实际运用场景的配置文件,其参数不定义数据来源,仅定义数据输入的格式大小 如下: train_val.prototxt deploy.prototxt…
之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下 本人以熟悉的LeNet网络结构为例子 不同点主要在一前一后,相同点都在中间 train_val.prototxt 中的开头 看这个名字也知道,里面定义的是训练和验证时候的网络,所以在开始的时候要定义训练集和验证集的来源 name: "LeNet" layer { name: "mnist" type: "Data" top: &quo…
见博客:http://blog.csdn.net/u010417185/article/details/52137825…
caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片:则,如果你的总图片张数为1280000张,则要想将你所有的图片通过网络训练一次,则需要1280000/256=5000次迭代. epoch:表示将所有图片在你的网络中训练一次所需要的迭代次数,如上面的例子:5000次:我们称之为  一代.所以如果你想要你的网络训练100代时,则你的总的迭代次数为max_iteration=5…
在修改propotxt之前我们可以对之前的网络结构进行一个直观的认识: 可以使用http://ethereon.github.io/netscope/#/editor 这个网址. 将propotxt文件内容复制后会得到可视化模型.…
1: 神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/…
如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层. 这里我们采用代码的方式来自动生成该文件,以mnist为例. deploy.py # -*- coding: utf-8 -*- from caffe import layers as L,params as P,to_proto…