激活函数之softmax介绍及C++实现】的更多相关文章

下溢(underflow):当接近零的数被四舍五入为零时发生下溢.许多函数在其参数为零而不是一个很小的正数时才会表现出质的不同.例如,我们通常要避免被零除或避免取零的对数. 上溢(overflow):当大量级的数被近似为∞或-∞时发生上溢.进一步的运算通常会导致这些无限值变为非数字. 必须对上溢和下溢进行数值稳定的一个例子是softmax函数(softmax function).softmax函数经常用于预测与Multinoulli分布相关联的概率,定义为: 考虑一下当所有xi都等于某个常数c时…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 使用numpy生成200个随机点 x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis] noise = np.random.normal(0, 0.02, x_data.shape) y_data = np.square(x_data) + noise # 定义两个placeholder x =…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见的激活函数包括Sigmoid.TanHyperbolic(tanh).ReLu. softplus以及softmax函数. 这些函数有一个共同的特点那就是他们都是非线性的函数.那么我们为什么要在神经网络中引入非线性的激活函数呢? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下…
英文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 中文译文:http://mp.weixin.qq.com/s/X81gDdlXnte-H0lLEvsJGg 编译: Python开发者 -  MentosZ  英文:ujjwalkarn.me http://blog.jobbole.com/113819/ 什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络的一种…
激活函数(relu,prelu,elu,+BN)对比on cifar10   可参考上一篇: 激活函数 ReLU.LReLU.PReLU.CReLU.ELU.SELU  的定义和区别   一.理论基础 1.1激活函数 1.2 elu论文(FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS)) 1.2.1 摘要     论文中提到,elu函数可以加速训练并且可以提高分类的准确率.它有以下特征: 1)el…
在多分类问题中,我们可以使用 softmax 函数,对输出的值归一化为概率值.下面举个例子: import sys sys.path.append("E:/zlab/") from plotnet import plot_net, DynamicShow num_node_list = [10, 7, 5] figsize = (15, 6) plot_net(num_node_list, figsize, 'net') Press `c` to save figure to &quo…
转自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/#测试模型 下载数据: # download the mnist to the path '~/.keras/datasets/' if it is the first time to be called# X shape (60,000 28x28), y shape (10,000, )(X_train, y_train), (X_t…
目录 Sigmoid 函数的优缺点是什么 ReLU的优缺点 什么是交叉熵 为什么分类问题的损失函数为交叉熵而不能是 MSE? 多分类问题中,使用 sigmoid 和 softmax 作为最后一层激活函数的区别 为什么 LSTM 中的激活函数为 tanh 和 sigmoid 而不用 Relu softmax 的反向传播 Sigmoid 函数的优缺点是什么 优点: 输出范围优先,可以将任意范围的输出映射到 (0, 1) 范围内,在输出层可以用于表示二分类的输出概率 易于求导 缺点: Sigmoid…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=106) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   在<DL基础补全计划(一)---线性回归及示例(Pytorch,平方损失)>(https://blog.csdn.net/u011728480/a…