svm 是针对二分类问题, 如果要进行多分类, 无非就是多训练几个svm呗 OVR (one versus rest) 对于k个类别(k>2) 的情况, 训练k个svm, 其中, 第j个svm用于判断任意条数据是是属于类别j还是非类别j. 预测的时候, 具有最大值的 \(w_i^Tx + bi\) 表示该样本属于类别i. 假设样本有 3个类别, A, B, C, 则需要训练3个svm, 记为s1, s2, s3 然后输出一个样本x, 都要经过 s1, s2, s3, 则为 max(s1(x),…
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
首先学习一下svm分类的使用. 主要有以下步骤: Loading and Visualizing Dataj Training Linear SVM Implementing Gaussian Kernel Training SVM with RBF Kernel 选择最优的C, sigma参数 画出边界线 线性keneral实现 C = 1; model = svmTrain(X, y, C, @linearKernel, 1e-3, 20); visualizeBoundaryLinear(…
SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中: (2)间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-…
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题"一次性"实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中:另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种. a.…
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This function shows how to use TensorFlow to # create a soft margin SVM # # We will use the iris data, specifically: # x1 = Sepal Length # x2 = Petal Width…
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vector Machine)以前在分类.回归问题中非常流行.支持向量机也称为最大间隔分类器,通过分离超平面把原始样本集划分成两部分. 首先考虑最简单的情况:线性可分支持向量机.即存在一个超平面能够把训练样本分开. 1.线性可分支持向量机 1.考虑一个线性二分类的问题:例如以下左图,在二维平面上有两种样本点x…
项目代码见 Github: 1.算法介绍 2.代码所用数据 详情参见http://qwone.com/~jason/20Newsgroups/ 文件结构 ├─doc_classification.py ├─stopwords.txt ├─vocabulary.txt ├─train.data ├─train.label ├─train.map ├─test.data ├─test.label └─test.map python代码 需要安装的库: pandas, liblinearutil 注:…
"one-against-one" approach from sklearn import svm X = [[0], [1], [2], [3]] Y = [0, 1, 2, 3] #"one-against-one" approach clf = svm.SVC(decision_function_shape='ovo') clf.fit(X, Y) dec = clf.decision_function([[1]]) print dec.shape[1] #…
SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libsvm函数库解决SVM模型的分类与回归问题. 说明:libsvm是实现svm的便捷开源工具,应用广泛,由国立台湾大学Chih-Chung Chang和Chih-Jen Lin编写,可以实现基于SVM的分类和回归. 1.分类 在Matlab下下载测试数据heart_sacle运行程序: load hea…