引言 自适应共振理论的发源与现状 1976年, 美国 Boston 大学学者 G. A.Carpenter 提出自适应共振理论(Adaptive Res-onance Theory , ART ), 他多年来一直试图为人类的心理和认知活动建立统一的数学理论, ART 就是这一理论的核心部分.随后 G. A.Carpenter 又与 S.Grossberg 提出了ATR 网络. 经过了多年的研究和不断发展,ART 网已有 3 种形式:ARTⅠ 型处理双极型或二进制信号: ART Ⅱ 型是 ART…
1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题. 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴. 找到目标问题的相似性,迁移学习任务就…
CVPR2020论文解读:OCR场景文本识别 ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文链接:https://arxiv.org/pdf/2002.10200.pdf 摘要 场景文本的检测与识别越来越受到人们的关注.现有的方法大致可以分为两类:基于字符的方法和基于分割的方法.这些方法要么代价高昂,要么需要维护复杂的管道,这通常不适合实时应用.在这里,我们提出了自适应贝塞尔曲线网络(AB…