自适应共振理论网络 ART】的更多相关文章

引言 自适应共振理论的发源与现状 1976年, 美国 Boston 大学学者 G. A.Carpenter 提出自适应共振理论(Adaptive Res-onance Theory , ART ), 他多年来一直试图为人类的心理和认知活动建立统一的数学理论, ART 就是这一理论的核心部分.随后 G. A.Carpenter 又与 S.Grossberg 提出了ATR 网络. 经过了多年的研究和不断发展,ART 网已有 3 种形式:ARTⅠ 型处理双极型或二进制信号: ART Ⅱ 型是 ART…
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络 那么机…
神经网络——最易懂最清晰的一篇文章 神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
本文转载自:http://www.cnblogs.com/maybe2030/p/5597716.html 阅读目录 1. 神经元模型 2. 感知机和神经网络 3. 误差逆传播算法 4. 常见的神经网络模型 5. 深度学习 6. 参考内容 目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1903.11012v3 [cs.LG] 19 Aug 2019 Neural Networks, 25 November 2019 Abstract 深度强化学习(RL)在可以通过训练过的策略解决的任务上表现了出色的性能.在使用多层神经网络(NN)的前沿机器学习方法中,它起着主导作用.同时,深度RL要求对噪声的高灵敏度,不完整和误导输入数据.遵循生物学直觉,我们将使用脉冲神经网络(SNN)来解决深度RL解决方案的一些不足…
目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral domain:频域方法(谱方法) 3. 什么是拉普拉斯矩阵? 3.1 常用的几种拉普拉斯矩阵 普通形式的拉普拉斯矩阵 对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian) 随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian) 泛化…
我浏览了创幻论坛.理想论坛,来到MACD股市技术分析俱乐部,真正找到自己的乐土. 做人要厚道!指标之王MACD既然被先辈们创造了出来,就应由我辈发扬光大!自吹自擂者.吝啬者都应自觉退出论坛既然来到这里,就不应该有所保留,把自己的东西拿出来和大家一块分享 ,有幸浏览了[多周期共振理论].根据该理论,制作出多周期趋势共振图,奉献给大家,恭喜发财!希望在今后的投资生涯中,少走一些弯路!             一:对于多周期共振, 1.基本上好股票总是在多周期上显示同步向上的,只有多周期同步的股票才具…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的测试数据集.Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类.不同品种的Iris花的花萼长度.花萼宽度.花瓣长度.花瓣宽度会有差异.我们现有一批已知品种的Iris花的花萼长度.花萼宽度.花瓣长度.花瓣宽度的数据. 一种解决方法是用已有的数据训练一个…
转自:http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html 第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的测试数据集.Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类.不同品种的Iris花的花萼长度.花萼宽度.花瓣长度.花瓣宽…
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的測试数据集.Iris数据集能够在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现须要对其进行分类.不同品种的Iris花的花萼长度.花萼…
第一节.神经网络基本原理  1. 人工神经元( Artificial Neuron )模型  人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias ).则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfe…
图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K阶截断: ChebNet 一阶ChebNet 自适应图卷积网络AGCN 谱方法小结 基于空域方法GCN 基于递归的空间GCN(Recurrent-based Spatial GCNs) 图神经网络GNN(特指早期的一种结构) 门控图神经网络(GGNN) 随机稳态嵌入SSE 基于合成的空间GCN(Composition Based Spa…
转自:http://www.360doc.com/content/13/0124/08/9008018_262076786.shtml   SODB 数据比特串-->最原始的编码数据 RBSP 原始字节序列载荷-->在SODB的后面填加了结尾比特(RBSP trailing bits 一个bit“1”)若干比特“0”,以便字节对齐. EBSP 扩展字节序列载荷-- >在RBSP基础上填加了仿校验字节(0X03)它的原因是: 在NALU加到Annexb上时,需要填加每组NALU之前的开始码…
H264码流打包分析 SODB 数据比特串-->最原始的编码数据 RBSP 原始字节序列载荷-->在SODB的后面填加了结尾比特(RBSP trailing bits 一个bit“1”)若干比特“0”,以便字节对齐. EBSP 扩展字节序列载荷-- >在RBSP基础上填加了仿校验字节(0X03)它的原因是: 在NALU加到Annexb上时,需要填加每组NALU之前的开始码 StartCodePrefix,如果该NALU对应的slice为一帧的开始则用4位字节表示,ox00000001,否…
android应用程序中 1. 尽可能的把文件缓存到本地.可以是 memory,cache dir,甚至是放进 SD 卡中(比如大的图片和音视频).    可以设置双重缓冲,较大的图片或者音频放到SD卡中,小的图片放到memory中.这样可以节约内存控件,避免频繁的造成内存占用过大而去清理缓存.2. 控制缓存中各条目的生存周期,有些时候犹如用户头像这一类内容甚至可以做成除非手动刷新否则永不过期.     缓冲中文件的生命周期可以在缓冲区的逻辑中进行处理,比如每次缓冲区的写入都判断下当前缓存中总文…
一视频编码介绍 1.1 视频压缩编码的目标 1)保证压缩比例 2)保证恢复的质量 3)易实现,低成本,可靠性 1.2 压缩的出发点(可行性) 1)时间相关性 在一组视频序列中,相邻相邻两帧只有极少的不同之处,这便是时间相关性. 2)空间相关性 在同一帧中,相邻象素之间有很大的相关性,两象素越近,侧相关性越强. 根据采用的信源的模型分类: 1)基于波形的编码 如果采用“一幅图像由许多象素构成”的信源模型,这种信源模型的参数就是象素的亮度和色度的幅度值,对这些参数进行编码的技术即为基于波形编码. 2…
H264 编码详解(收集转载) (1)       x264_param_default( x264_param_t *param ) 作用: 对编码器进行参数设定 cqm:量化表相关信息 csp: 量化表相关信息里的memset( param->cqm_4iy, 16, 16 ); memset( param->cqm_4ic, 16, 16 ); memset( param->cqm_4py, 16, 16 ); memset( param->cqm_4pc, 16, 16 )…
摘要 目前检测的准确率受物体视频中变化的影响,如运动模糊,镜头失焦等.现有工作是想要在框的级别上寻找时序信息,但这样的方法通常不能端到端训练.我们提出了flow-guided feature aggregation,一个用于视频物体检测的端到端学习框架.在特征级别上利用时序信息,通过相邻帧的运动路径提高每帧的特征,从而提高检测的准确率. 简介 特征提取网络提取出每帧的feature maps.为了enhance被处理帧的特征,用一个光流网络(flownet)预测相邻帧和该帧之间的motions.…
0.背景 随着CNN变得越来越深,人们发现会有梯度消失的现象.这个问题主要是单路径的信息和梯度的传播,其中的激活函数都是非线性的,从而特别是乘法就可以使得随着层数越深,假设将传统的神经网络的每一层看成是自动机中的一个状态.那么对于整个神经网络来说,输入到输出就是一个输入态不断的转移到输出态的一个过程.假设其中每一层都是有个变率,即缩放因子.那么: 变率大于1,层数越多,越呈现倍数放大趋势,比如爆炸: 变率小于1,层数越多,越呈现倍数缩小趋势,比如消失: 而传统以往的卷积神经网络都是单路径的,即从…
基于贝叶斯的深度神经网络自适应及其在鲁棒自动语音识别中的应用     直接贝叶斯DNN自适应 使用高斯先验对DNN进行MAP自适应 为何贝叶斯在模型自适应中很有用? 因为自适应问题可以视为后验估计问题: 能够克服灾难性遗忘问题 在实现通用智能时,神经网络需要学习并记住多个任务,任务顺序无标注,任务会不可预期地切换,同种任务可能在很长一段时间内不会复现.当对当前任务B进行学习时,对先前任务A的知识会突然地丢失,这种现象被称为灾难性遗忘(catastrophic forgetting). DNN的M…
用HTTP协议传输媒体文件可以分两个阶段,第一个阶段是Progressive Download(渐进式下载方式)阶段,第二个阶段是HTTP streaming(HTTP流化)阶段.其中,第一个阶段可以看成第二个阶段的前身. Progressive Download 渐进式下载是一种顺序流式传输,它是一种简单的从HTTP WEB服务器进行文件下载的方式,其中“渐进”指的是用户可以一边下载一边播放,而不需将整个媒体文件下载完毕再播放.在渐进式下载中,客户端用户发送HTTP请求流媒体文件,服务器收到请…
网络时间协议 由特拉华大学的David L. Mills热心提供.http://www.eecis.udel.edu/~mills mills@udel.edu 由Reinhard v. Hanxleden CAU Kiel稍微改编.rvh@informatik.uni-kiel.de (一)引言 (1)网络时间协议( NTP)使得在互联网上主机和路由器的时钟同步. (2)有超过十万的网络时间协议部署在互联网上其支流遍布世界各地. (3)在广域网上,它提供了名义上低于几毫秒的精度:它为局域网提供…
神经网络 有的模型可以有多种算法.而有的算法可能可用于多种模型.在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器.神经网络在学习中,一般分为有教师和无教师学习两种.感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的.在主要神经网络如Bp网络,Hopfield网络,ART络和Kohonen网络中;Bp网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Khonone网络则无…
1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题. 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴. 找到目标问题的相似性,迁移学习任务就…
CVPR2020论文解读:OCR场景文本识别 ABCNet:  Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文链接:https://arxiv.org/pdf/2002.10200.pdf 摘要 场景文本的检测与识别越来越受到人们的关注.现有的方法大致可以分为两类:基于字符的方法和基于分割的方法.这些方法要么代价高昂,要么需要维护复杂的管道,这通常不适合实时应用.在这里,我们提出了自适应贝塞尔曲线网络(AB…
目录 摘要 一.引言 二.相关工作 3D数据表示 点云深度学习 三.我们的方法 3.1 自适应特征调整(AFA)模块 3.1.1 影响函数fimp 3.1.2 关系函数frel 3.1.3 逐元素影响图 3.2带有局部特征调制的PointWeb 四.实验评估 4.1 应用细节 4.2 S3DIS语义分割 数据和度量 性能比较 消融研究 特征可视化 4.3 ScanNet语义体素标记 4.4 ModelNet40 分类 五.结束语 PointWeb: Enhancing Local Neighbo…
前面的笔记记录了Winsock的入门编程,领略了Winsock编程的乐趣..但这并不能算是掌握了Winsock,加深理论知识的理解才会让后续学习更加得心应手..因此,这篇笔记将记录一些有关Winsock的基本理论知识,由于是一篇笔记,鉴于看书速度有限,主要内容会慢慢地填入..错误在所难免的,希望看客更正..(*^__^*) 嘻嘻…… <一>:消息和流(摘录自网上) 保护消息边界,就是指传输协议把数据当作一条独立的消息在网上传输,接收端只能接收独立的消息.也就是说存在保护消息边界,接收端一次只能…