MapReduce源码分析之JobSplitWriter】的更多相关文章

JobSplitWriter被作业客户端用于写分片相关文件,包括分片数据文件job.split和分片元数据信息文件job.splitmetainfo.它有两个静态成员变量,如下: // 分片版本,当前默认为1 private static final int splitVersion = JobSplit.META_SPLIT_VERSION; // 分片文件头部,为UTF-8格式的字符串"SPL"的字节数组"SPL" private static final by…
JobSubmitter,顾名思义,它是MapReduce中作业提交者,而实际上JobSubmitter除了构造方法外,对外提供的唯一一个非private成员变量或方法就是submitJobInternal()方法,它是提交Job的内部方法,实现了提交Job的所有业务逻辑.本文,我们将深入研究MapReduce中用于提交Job的组件JobSubmitter. 首先,我们先看下JobSubmitter的类成员变量,如下: // 文件系统FileSystem实例 private FileSystem…
MapReduce作业提交时连接集群是通过Job的connect()方法实现的,它实际上是构造集群Cluster实例cluster,代码如下: private synchronized void connect() throws IOException, InterruptedException, ClassNotFoundException { // 如果cluster为null,构造Cluster实例cluster, // Cluster为连接MapReduce集群的一种工具,提供了一种获取…
LocatedFileStatusFetcher是MapReduce中一个针对给定输入路径数组,使用配置的线程数目来获取数据块位置的实用类.它的主要作用就是利用多线程技术,每个线程对应一个任务,每个任务针对给定输入路径数组Path[],解析出文件状态列表队列BlockingQueue<List<FileStatus>>.其中,输入数据输入路径只不过是一个Path,而输出数据则是文件状态列表队列BlockingQueue<List<FileStatus>>,文…
一 MapReduce概述 Map/Reduce是一个用于大规模数据处理的分布式计算模型,它最初是由Google工程师设计并实现的,Google已经将它完整的MapReduce论 文公开发布了.其中对它的定义是,Map/Reduce是一个编程模型(programmingmodel),是一个用于处理和生成大规模数据集 (processing and generating large data sets)的相关的实现.用户定义一个map函数来处理一个key/value对以生成一批中间的key/val…
作业Job状态机维护了MapReduce作业的整个生命周期,即从提交到运行结束的整个过程.Job状态机被封装在JobImpl中,其主要包括14种状态和19种导致状态发生的事件. 作业Job的全部状态维护在类JobStateInternal中,如下所示: public enum JobStateInternal { // 作业新建状态,当作业Job被新创建时所处的状态 NEW, // 作业启动状态,此时运行时间已被设置,任务处于开始被调度阶段 SETUP, // 作业已初始化状态,此时作业中的Ma…
我们知道,MapReduce有三层调度模型,即Job——>Task——>TaskAttempt,并且: 1.通常一个Job存在多个Task,这些Task总共有Map Task和Redcue Task两种大的类型(为简化描述,Map-Only作业.JobSetup Task等复杂的情况这里不做考虑): 2.每个Task可以尝试运行1-n此,而且通常很多情况下都是1次,只有当开启了推测执行原理且存在拖后腿Task,或者Task之前执行失败时,Task才执行多次. 而TaskImpl中存在一个成员变…
InputFormat描述了一个Map-Reduce作业中的输入规范.Map-Reduce框架依靠作业的InputFormat实现以下内容: 1.校验作业的输入规范: 2.分割输入文件(可能为多个),生成逻辑输入分片InputSplit(往往为多个),每个输入分片InputSplit接着被分配给单独的Mapper: 3.提供记录读取器RecordReader的实现,RecordReader被用于从逻辑输入分片InputSplit收集输入记录,这些输入记录会被交由Mapper处理. 基于文件的输入…
1.概述 前面我们已经对Hadoop有了一个初步认识,接下来我们开始学习Hadoop的一些核心的功能,其中包含mapreduce,fs,hdfs,ipc,io,yarn,今天为大家分享的是mapreduce部分,其内容目录如下所示: MapReduce V1 MapReduce V2 MR V1和MR V2的区别 MR V2的重构思路 本篇文章的源码是基于hadoop-2.6.0-src.tar.gz来完成的.代码下载地址,请参考<Hadoop2源码分析-准备篇>. 2.MapReduce V…
本文继<Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)>,接着讲述MapReduce作业在MRAppMaster上处理总流程,继上篇讲到作业初始化之后的作业启动,关于作业初始化主体流程的详细介绍,请参见<Yarn源码分析之MRAppMaster上MapReduce作业初始化解析>一文. (三)启动 作业的启动是通过MRAppMaster的startJobs()方法实现的,其代码如下: /** * This can be overridden to …