[bzoj3545][ONTAK2010]Peaks 2014年8月26日3,1512 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1. Input 第一行三个数N,M,Q.第二行N个数,第i个数为h_i接下来M行,每行3个数a b c,表示从a到b有一条困难…
1A还行 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1. Input 第一行三个数N,M,Q.第二行N个数,第i个数为h_i接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径.接下来Q行,每行三个数v x k,表示一组询问. Outpu…
传送门 由于困难值小于等于x这个很恶心,可以离线处理,将边权,和询问时的x排序. 每到一个询问的时候,将边权小于等于x的都合并起来再询问. .. 有重复元素的线段树合并的时间复杂度是nlog^2n #include <cstdio> #include <iostream> #include <algorithm> #define N 500001 int n, m, q, cnt, tot, size; int sum[N * 10], ls[N * 10], rs[N…
题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. \(Solution\) x的限制将图分成了若干连通块,如果x单调递增的话,只需要合并连通块就可以了. 离线,并查集维护所属连通块,线段树合并状态.查询K大.(强制在线的话可以主席树?BZOJ3551 不想写了还是写了,还好) 强制在线的Kruskal+主席树做法:BZOJ3551. //39360kb 5248ms…
题意: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1. 分析: 我们把题目中的限制分离出来: 1. 困难值不超过x. 2. 能达到的第k高的山峰. 如果没有限制1,我们对每个连通块建线段树即可,如果没有限制2,我们我们可以选择按照kruskal的思想,按照困难值从小到大加便,离线处…
离线乱搞... 也就是一个线段树合并没什么 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> using namespace std; int n,m,q,tot,cnt,num,h[100001],a[100001],ans[500001],fa[100001],root[100001]; struct edge{ int u,v,cost; bool ope…
题目链接 bzoj3545: [ONTAK2010]Peaks 题解 套路重构树上主席树 代码 #include<cstdio> #include<algorithm> #define gc getchar #define pc putchar inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9') { if(c == '-')f = -1; c = gc();…
Peaks 线段树合并 \(n\)个带权值\(h_i\)山峰,有\(m\)条山峰间双向道路,\(q\)组询问,问从\(v_i\)开始只经过\(h_i\le x\)的路径所能到达的山峰中第\(k\)高的山峰,如果无解输出\(-1\) 线段树合并好题.吊打主席树.Kruskal重构树的典范 首先发现可以离线,我们将所有询问按\(x\)排序,随着询问再去加边,这样可以去掉路径上\(h_i\le x\)这一条件使问题极大简化. 然后从\(v_i\)开始能经过的所有山峰可以看做联通块,于是我们愉快地用并查…
这俩东西听起来很高端,实际上很好写,应用也很多~ 线段树合并 线段树合并,顾名思义,就是建立一棵新的线段树保存原有的两颗线段树的信息. 考虑如何合并,对于一个结点,如果两颗线段树都有此位置的结点,则直接合并两结点的信息(如维护最大值则取max,维护和则相加),然后递归处理左右子树: 若只有一个有,直接返回即可. 这样子做时间复杂度取决于重合节点个数,一次最坏复杂度是$O(nlogn)$,因为满二叉树的结点数是$O(n)$,对每个结点进行处理是$O(logn)$,但是实际应用中需要合并的两颗树重合…
题目描述: bzoj3545,luogu bzoj3551 题解: 重构树+线段树合并. 可以算是板子了吧. 代码(非强制在线): #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; *N; template<typename T> inline void read(T&x) { T f = ,c = ;char ch=getchar(); ;ch…