The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly defined three transformers: DataFrameSelector: Select features to handle. CombinedAttributesAdder: Add a categorical feature Age_cat which divided all pa…
Getting started with machine learning in Python Machine learning is a field that uses algorithms to learn from data and make predictions. Practically, this means that we can feed data into an algorithm, and use it to make predictions about what might…
前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找到了3本:<Learning scikit-learn: Machine Learning in Python><Mastering Machine Learning With scikit-learn><scikit-learn Cookbook>,第一本是2013年出版…
Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Foundational Machine Learning Skills Unofficial Andrew Ng course notes Tom Mitchell Machine Learning Lectures Step 3: Scientific Python Packages Overvie…
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归…
Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把所有相关的包安装完成. Anaconda的下载地址在: https://www.continuum.io/downloads#windows 目前是4.3.0版本,Windows 64-bit的安装文件大约在413M左右. 下载.安装完成后,在Python的IDE环境中,可以选择Anaconda作为…
In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a series of steps in data preparation. Scikit-Learn provides the Pipeline class to help with such sequences of transformations. The Pipeline constructor take…
In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels for train set. Here we use drop() method in Pandas library. housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for traini…
Here I list some useful functions in Python to get familiar with your data. As an example, we load a dataset named housing which is a DataFrame object. Usually, the first thing to do is get top five rows the dataset by head() function: housing = load…
Using Pandas Library The simplest way is to read data from .csv files and store it as a data frame object: import pandas as pd df = pd.read_csv('olympics.csv', index_col=0, skiprows=1) You can also read .xsl files and directly select the rows and col…