d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下面是四边形不等式优化的代码: #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; + ; + ; const int…
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等…
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highl…
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\forall a \le b \le c \le d\)有 \[val(a,d) + val(b,c) \ge val(a,c) + val(b,d)\] 那么我们称函数\(val(i,j)\)满足四边形不等式 一般地,当我们需要证明一个函数\(val(i,j)\)满足四边形不等式时,只需证对于\(\fo…
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond       题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Descrip…
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i,j)\) 暴力显然不太行 不过暴力枚举决策的话 可以预处理前缀和线性推出. 显然想要优化决策的话第一步就需要O(1)求出\(cost(i,j)\) 经过画图 可以发现预处理出\(g[i][j]\)表示从\((1,1)\)到\((i,j)\)这个矩形中的点值和 和 \(sum_i\)表示\((1,1…
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组.但是复杂度是三次方的,肯定会超时,就要对其进行优化. 有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化 dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[…
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 求出将n堆石子合并成一堆的最小得分和最大得分以及相应的合并方案. 设m[i,j]表示合并d[i..j]所得到的最小得分. 状态转移方程: 总的时间复杂度为O(n3). [优化方案] 四边形不等式: m[i,j]满足四边形不等式 令s[i,j]=max{k | m[…
题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小. 析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村庄用 k 个邮局距离最小,w可以先预处理出来O(n^2),但是这个方程很明显是O(n^3),但是因为是POJ,应该能暴过去..= =,正解应该是对DP进行优化,很容易看出来,w是满足四边形不等式的,也可以推出来 s 是单调的,可以进行优化. 代码如下: #pragma comment(linker,…
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<…
题目描述 一些村庄建在一条笔直的高速公路边上,我们用一条坐标轴来描述这条公路,每个村庄的坐标都是整数,没有两个村庄的坐标相同.两个村庄的距离定义为坐标之差的绝对值.我们需要在某些村庄建立邮局.使每个村庄使用与它距离最近的邮局,建立邮局的原则是:所有村庄到各自使用的邮局的距离总和最小.数据规模:1<=村庄数<=1600, 1<=邮局数<=200, 1<=村庄坐标<=maxlongint 输入 行第一行:n m {表示有n个村庄,建立m个邮局} 第二行:a1 a2 a3 .…
题面: 传送门 思路: 依然是一道很明显的区间dp 我们设$dp\left[i\right]\left[j\right]$表示前$j$个节点分成了$i$块的最小花费,$w\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$放在一起产生的价值 那么转移就比较明显了: $dp\left[i\right]\left[j\right]=min\left(dp\left[i-1\right]\left[k-1\right]+w\left[k\right…
题意:要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门分成s个组.分组完成后,每一组的任 意两个点之间都要传递信息.假设在(i,j)两个点间传送信息,要先把信息加密,然后快递员从i出发到总部,再加 密,在到j点.出于安全原因,每次只能携带一条消息.现在给出了道路网络.各个部门和总部的位置,请输出快 递员要走的最小总距离. 思路:求最短路dis,排序. 由排序不等式,dis相近的分到一组. 那么就是一个分组问题,可以用四边形不等式: 决策单调性DP: 二分+单调栈: 斜…
定义 & 等价形式 四边形不等式是定义在整数集上的二元函数 \(w(x, y)\). 定义:对于任意 \(a \le b \le c \le d\),满足交叉小于等于包含(即 \(w(a, c) + w(b, d) \le w(b, c) + w(a, d)\).① 等价形式,对于任意的 \(a < b\),都有 \(w(a, b-1) + w(a+1,b) \le w(a+1, b-1)+w(a,b)\).② ① 推 ② 看定义即可,② 推 ① 的证明: 任取 \(a < d\),\…
目录 1. 四边形不等式与决策单调性 2. 决策单调性优化 dp - (i) 关于符号 1. 四边形不等式与决策单调性 定义(四边形不等式) 设 \(w(x,y)\) 是定义在整数集合上的二元函数,若对于任意 \(a\le b\le c\le d\),都有 \[w(a,d)+w(b,c)\ge w(a,c)+w(b,d) \] 则称 \(w\) 满足 四边形不等式 . 定义(区间包含单调性) 设 \(w(x,y)\) 是定义在整数集合上的二元函数,若对于任意 \(a\le b\le c\le d…
目录 题目描述 输入 输出 思路 新年趣事之红包 时间限制: 1 Sec  内存限制: 64 MB 题目描述 xiaomengxian一进门,发现外公.外婆.叔叔.阿姨--都坐在客厅里等着他呢.经过仔细观察,xiaomengxian发现他们所有人正好组成了一个凸多边形.最重要的是,他们每个人手里都拿着一个红包(^o^).于是非常心急,xiaomengxian决定找一条最短的路线,拿到所有的红包. 假设屋里共有N个人拿着红包,把他们分别从1到N编号.其中,编号为1的人就坐在大门口,xiaomeng…
形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w[a][d]+w[b][c](a\;\leq\;b<c\;\leq\;d)$ ②区间包含关系单调:$w[i+1][j]\;\leq\;w[i][j]\;\leq\;w[i][j+1]$ 则$f[\;][\;]$也满足四边形不等式. 记使$f[i][j]$最小的$k$为$g[i][j]$,则$g[i]…
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1:  如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2:  若f满足四边形不等式,则决策s满足 s[i…
记录一下,以免忘了 对于一个形如 \[dp[i][j]=min(dp[i][k]+dp[k][j]+w[i][j])\] 的转移方程(注意取最大值时不一定满足四边形不等式) 定理1 若对于\(a \leq b\leq c \leq d\)且\(w_{b,c}\leq w_{a,d}\) 那么我们称\(w\)关于区间包含关系单调 定理2 若对于\(a \leq b\leq c \leq d\)且\(w_{a,c}+w_{b,d}\leq w_{b,c}+w_{a,d}\) 则称\(w\)满足四边形…
题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=min(dp(i,k-1)+w(k,j)),其中w(i,j)=(a[i]-s[j])*(a[i]-a[j]).很显然,dp(i,j)满足凸四边形不等式. 代码如下: # include<iostream> # include<cstdio> # include<cstring>…
题意:N个人排成一行,分成K组,要求每组的不和谐值之和最小. 思路:开始以为是斜率优化DP,但是每个区间的值其实已经知道了,即是没有和下标有关的未知数了,所以没必要用斜率. 四边形优化. dp[i][j]表示前j个人分为i组的最小代价. 622ms #include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; ; ][maxn],pos[][maxn]; void read(in…
There is a straight highway with villages alongside the highway. The highway is represented as an integer axis, and the position of each village is identified with a single integer coordinate. There are no two villages in the same position. The dista…
dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn=1e3+9; int a[maxn]; long long dp[maxn][maxn],…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 N堆石子摆成一个环.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价.   例如: 1 2 3 4,有不少合并方法 1 2 3…
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<cmath> using namespace std; #define Maxn 1010 #define INF 0xfffffff *Maxn],sum[*Maxn]; *Maxn][*M…
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:…
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j]);(或者是max(........),本博客以min为例来证明) 熟悉一般区间dp的同学应该清楚我们如果想得到最终的答案,一般要用三层for循环来计算(第一层为长度,第二层枚举起始点,第三层在起始点i和终点j之间寻找最优的分割点).显而易见它的时间复杂度为o(n^3),…
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i] 但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤…
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] + sum[i][j]) 对于第i堆到第j堆合并的花费 他的子问题是第i个的合并顺序 op1:k实际上控制的是第i堆也就是起始堆的合并顺序 因为必须是相邻合并dp[i][i] 先合并dp[i+1][j]最后再来合并…
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不了的,需要优化 注意:dp的转移如下:dp[i][j]=min(dp[i][k]+dp[k+1][j]+sum(i,j)),其中sum(i,j)表示i到j的价值和,满足区间单调性 因此dp[i][j]也满足区间单调性,可以用四边形不等式优化 我们令s[i][j]等于让dp[i][j]取最小值的那个K…