R-data.table】的更多相关文章

由于基因组数据过大,想进一步用R语言处理担心系统内存不够,因此想着将文件按染色体拆分,发现python,awk,R 语言都能够非常简单快捷的实现,那么速度是否有差距呢,因此在跑几个50G的大文件之前,先用了244MB的数据对各个脚本进行测试,并且将其速度进行对比. 首先是awk处理,awk进行的是逐行处理,具有自己的语法,具有很大的灵活性,一行代码解决,用时24S, #!/usr/bin/sh function main() { start_tm=date start_h=`$start_tm…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "…
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率.于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求. data.table可是比dplyr以及Python中的pandas还好用的数据处理方式. 网络上充斥的是data.table很好,很棒,性能棒之类的,但是从我实际使用来看,就得泼个水,网上博客都是拿一…
R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较. 一.日期分组 1.关于时间的包都有很多很好的日期分组应用. 2.cut()函数 cut(x, n):将连续型变量x分割为有着n个水平的因子 cut(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3, ordered_result = F…
这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时间.一个数据表格包含三部分,即DT[i, j, by].你可以理解为我们告诉R用i来选出行的子集,并计算通过by来分组的j.大多数时候,by是用于类别变量的. 特点 data.table(DT)的操作语句类似于SQL,DT[i, j, by]中的i, j, by 对应着SQL语句的 i=where,…
data.table包提供了一个非常简洁的通用格式:DT[i,j,by]. 可以理解为:对于数据集DT,选取子集行i,通过by分组计算j. 对比与dplyr等包,data.table的运行速度更快. 创建方式和data.frame 一样 创建一个data.frame: DF = data.frame(x=c("b","b","b","a","a"),v=rnorm(5)) 创建一个data.table: D…
>library(data.table)>data=fread("10000000.txt")>Read 9999999 rows and 71 (of 71) columns from 3.375 GB file in 00:02:36##一千万行,耗时160s.##同样的数据用read.table函数读取要600s. 参考资料: R语言data.table速查手册:https://www.cnblogs.com/nxld/p/6059570.html https:…