题面 题解 我们把每个地雷向它能炸到的地雷连边,不难发现同一个强联通分量里的点只要一个炸全炸 那么我们缩点,首先所有入度为\(0\)的强联通分量中必须得选一个地雷炸掉,而入度不为\(0\)的强联通分量绝对会被某个入度为\(0\)的点连锁反应给炸掉,所以不用考虑 于是对于每个入度为\(0\)的点开一个\(set\),维护里面的所有\(c_i\),从每个\(set\)里取出最小的加入答案,修改也没问题了,于是有\(50\)分了 然而现在的问题是边数太多了,题解的做法是用线段树优化连边,于是就可以\(…
题面 题解 设\(lim=(n-1)/2\)(这里是下取整),那么\(x\)位置的值最大不能超过\(lim\),而\(y\)处的值不能小于\(y\),于是有\[Ans=\sum_{i=1}^{lim}\sum_{j=2 i+1}^n(y-2)!{j-2\choose y-2}(n-y)!\] 上式的意思是,枚举\(x\)处的值\(i\)和\(y\)处的值\(j\),那么放在\(y\)前面的数都不能大于\(j\),要从除了\(i,j\)之外的剩下\(j-2\)个数中选出\(y-2\)个,因为顺序无…
题面 题解 幸好咱不是在晚上做的否则咱就不用睡觉了--都什么年代了居然还会出高精的题-- 先考虑如果暴力怎么做,令\(G(x)\)为\(F(n,k)\)的生成函数,那么不难发现\[G^R(x)=\prod_{i=1}^n(x+i)\] 也就是说如果把\(G(x)\)的系数反过来就是后面那个东西,所以对于\(n\leq 100000\)的数据直接分治\(FFT\)就行了.不过因为这里的模数不一定满足原根性质,所以要用三模数\(NTT\)或拆系数\(FFT\)(所以咱为了这题还特地去学了一下拆系数-…
题面 题解 这种题目就是要好好推倒 我们枚举最小的数是哪一个,那么答案就是\[Ans=\sum_{i=1}^nT^i{n-i\choose k-1}\] 因为有\[\sum_{i=p}^n{n-i\choose k-1}={n-p+1\choose k}\] 原式太难算了,我们可以先计算\(\sum_{i=1}^nT{n-i\choose k-1}=T\times {n\choose k}\),再加上\(\sum_{i=2}^n(T^2-T){n-i\choose k-1}=(T^2-T)\ti…
题目描述 题解 qy的毒瘤题 CSP搞这种码农题当场手撕出题人 先按照边权从大到小建重构树,然后40%暴力修改+查找即可 100%可以定期重构+平衡规划,每次把B个询问拉出来建虚树,在虚树上暴力维护每一段的凸壳,在凸壳上二分 虚树建法: 按照dfs序排序,每次用栈维护从根到当前点的栈 每次把当前点和栈顶做lca,若lca=栈顶就直接加,否则一直弹到栈顶是lca的祖先,顺便记录下每个点在虚树上的父亲 如果栈顶=之前的lca就不用管,否则加上lca,修改最后弹出的点的父亲 (注意要把根加进去) 设每…
题目 题目大意 给你一棵树,带点权和边权. 要你选择一个联通子图,使得点权和乘最小边权最大. 支持修改点权操作. 思考历程 显然,最先想到的当然是重构树了-- 重构树就是在做最大生成树的时候,当两个联通块相连时,新增一个点,将两个联通块的根节点连上去. 这个新建的点上记录这条边的边权,那么以它为子树的答案就是子树的点权和乘上自己表示的这条边的边权. 然后题目就变成了一个似乎很经典的问题:给你\(a_i\)和\(b_i\),每次修改可以将区间内的\(a_i\)区间加,询问最大的\(a_ib_i\)…
题目 题目大意 给你一串二元组\((a_i,b_i)\)的数列. 求最小的区间\([l,r]\)长度,满足\([l,r]\)中的每个二元组选或不选,使得\(\sum a_i=w\)且\(\sum b_i\leq k\) 思考历程 想了好久,想来想去都是一个背包-- 最终决定打暴力-- 正解 先说说GMH大爷的神奇解法. 首先是二分答案\(ans\),转化成判定问题.然后在数列中每\(ans\)个点设置一个观测点. 以每个观测点为中心,向左和向右背包,然后合并. 然而正解并不需要一个\(\log\…
5818. [NOIP提高A组模拟2018.8.15] 做运动 (File IO): input:running.in output:running.out Time Limits: 2000 ms  Memory Limits: 524288 KB  Detailed Limits   Goto ProblemSet Description 一天,Y 君在测量体重的时候惊讶的发现,由于常年坐在电脑前认真学习,她的体重有了突 飞猛进的增长.幸好 Y 君现在退役了,她有大量的时间来做运动,她决定每…
因为系统在windows下测试过是正常的 windows下的jdk+ windows下安装的mysql 全部cases通过 linux下的jdk + windows下安装的mysql 新增和更新,影响到日期的时刻,都会Data truncation: Incorrect datetime value: 'May 15, 2019 4:15:37 PM linux下的jdk + linux 下的mysql 新增和更新,影响到日期的时刻,都会Data truncation: Incorrect da…
本文旨在记录使用各位大神的经典解决方案. 2019.08.14 更新 Mybatis saveOrUpdate SelectKey非主键的使用 MyBatis实现SaveOrUpdate mybatis实现insertOrUpdate功能 MyBatis实现SaveOrUpdate终极万能版 InsertOrUpdate的一些注意项 (数据库隔离级别.事务影响) Mybatis SqlSessionTemplate 源码解析 2019.08.15 更新 [ MySQL 5.7.X + Mybat…