首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
R与数据分析旧笔记(十八完结) 因子分析
】的更多相关文章
R与数据分析旧笔记(八)多重共线性
多重共线性(线性代数叫线性相关) 多重共线性(线性代数叫线性相关) 1.什么是多重共线性 2.多重共线性对回归模型的影响 3.利用计算特征根发现多重共线性 4.Kappa()函数 例题1 考虑一个有六个回归自变量的线性回归问题,原始数据列在下表中,这里共有12组数据,除第一组外,自变量的其余11组数据满足线性关系 试用求矩阵条件数的方法,分析出自变量间存在多重共线性. 序号 1 10.006 8.000 1.000 1.000 1.000 0.541 -0.099 2 9.737 8.000 1…
R与数据分析旧笔记(十八完结) 因子分析
因子分析 因子分析 降维的一种方法,是主成分分析的推广和发展 是用于分析隐藏在表面现象背后的因子作用的统计模型.试图用最少的个数的不可测的公共因子的线性函数与特殊因子之和来描述原来观测的每一分量 因子分析的主要用途 减少分析变量的个数 通过对变量间相关关系的探测,将原始变量分组,即将相关性高的变量分为一组,用共性因子来代替该变量 使问题背后的业务因素的意义更加清晰呈现 与主成分分析的区别 主成分分析侧重"变异量",通过转换原始变量为新的组合变量使到数据的"变异量"最…
R与数据分析旧笔记(十六) 基于密度的方法:DBSCAN
基于密度的方法:DBSCAN 基于密度的方法:DBSCAN DBSCAN=Density-Based Spatial Clustering of Applications with Noise 本算法将有足够高密度的区域划分为簇,并可以发现任何形状的聚类 若干概念 r-邻域:给定点半径r内的区域 核心点:如果一个点的r-邻域至少包含最少数目M个点,则称该点为核心点 直接密度可达:如果点p在核心点q的r-邻域内,则称p是从q出发可以直接密度可达 如果存在点链是从关于r和M直接密度可达 ,则称点p是…
R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法
基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成聚簇 随机选择一个非中心点,用它代替某个现有的中心点,计算这个代换的总代价S 如果S<0,则用代替,形成新的k个中心点集合 重复2,直至中心点集合不发生变化 K中心法的实现:PAM PAM使用离差平方和来计算成本S(类似于ward距离的计算) R语言的cluster包实现了PAM K中心法的优点:对于&…
R与数据分析旧笔记(十四) 动态聚类:K-means
动态聚类:K-means方法 动态聚类:K-means方法 算法 选择K个点作为初始质心 将每个点指派到最近的质心,形成K个簇(聚类) 重新计算每个簇的质心 重复2-3直至质心不发生变化 kmeans()函数 > X=iris[,1:4]> km=kmeans(X,3)> kmK-means clustering with 3 clusters of sizes 62, 50, 38Cluster means: Sepal.Length Sepal.Width Petal.Length…
R与数据分析旧笔记(十二)分类 (支持向量机)
支持向量机(SVM) 支持向量机(SVM) 问题的提出:最优分离平面(决策边界) 优化目标 决策边界边缘距离最远 数学模型 问题转化为凸优化 拉格朗日乘子法--未知数太多 KKT变换和对偶公式 问题的解决和神经网络化 对偶公式是二次规划问题,有现成的数值方法可以求解 大部分的拉格朗日乘子为0,不为0的对应于"支持向量"(恰好在边界上的样本点) 只要支持向量不变,修改其他样本点的值,不影响结果,当支持变量发生改变时,结果一般就会变化 求解出拉格朗日乘子后,可以推出w和b,判别函数可以写成…
R与数据分析旧笔记(十)非线性模型
非线性模型 非线性模型 例子:销售额x与流通费率y > x=c(1.5,2.8,4.5,7.5,10.5,13.5,15.1,16.5,19.5,22.5,24.5,26.5)> y=c(7.0,5.5,4.6,3.6,2.9,2.7,2.5,2.4,2.2,2.1,1.9,1.8)> plot(x,y) 1.直线回归 > lm.1=lm(y~x)> summary(lm.1)Call:lm(formula = y ~ x)Residuals: Min 1Q Median 3…
R与数据分析旧笔记(⑦)回归诊断
回归诊断 回归诊断 1.样本是否符合正态分布假设? 2.是否存在离群值导致模型发生较大误差? 3.线性模型是否合理? 4.误差是否满足独立性.等方差.正态分布等假设条件? 5.是否存在多重共线性 正态分布检验:函数shapiro.test() P>0.05,正态分布 例题1 Anscomber数据 数据 1-3 1 2 3 4 4 号 X Y Y Y X Y 1 10.0 8.04 9.14 7.46 8.0 6.58 2 8.0 6.95 8.14 6.77 8.0 5.76 3 13.0 7…
R与数据分析旧笔记(五)数学分析基本
R语言的各种分布函数 rnorm(n,mean=0,sd=1)#高斯(正态) rexp(n,rate=1)#指数 rgamma(n,shape,scale=1)#γ分布 rpois(n,lambda)#Poisson分布 rweibull(n,location=0,scale=1)#Weibull分布 rcauchy(n,location=0,scale=1)#Cauchy分布 rbeta(n,shape1,shape2)#β分布 rt(n,df)#t分布 rf(n,df1,df2)#F分布 r…
R与数据分析旧笔记(三)不知道取什么题目
连线图 > a=c(2,3,4,5,6) > b=c(4,7,8,9,12) > plot(a,b,type="l") 多条曲线效果 plot(rain$Tokyo,type="l",col="red",ylim=c(0,300), main="Monthly Rainfall in major cities", xlab="Month of Year", ylab="Rainf…