Gauss 高斯消元】的更多相关文章

高斯消元…… (裸的暴力) 如果你有一个n元的方程组你会怎么办? Ans:直接用初中的解方程组的方法呀! 没错,直接暴力加减消元.那什么是“高斯消元”?说白了,就是普通的加减消元罢了. 本人再考场上打了一个暴力解方程,大家都说要高斯消元,弄得我方极了,最后才发现我打的暴力就是高斯消元 流程 选其中一个方程 将其他方程的其中一个元与选出的方程统一系数 将选出的方程与其他方程相减,消去一个未知数,得到 n-1 个 n-1 元的方程组 重复之前的步奏,知道只剩一个一元一次的方程 求出解,将解一步步往回…
从数组中选择几个数,要求他们的乘积可以开平方,问有多少种方案. 先将单个数拆分成质因子,对于这个数而言,那些指数为奇数的质因子会使这个数无法被开平方. 所以我们需要选择一个对应质因子指数为奇数的元素,将他们两个放在一个方案中,但是又有可能会引入其他的质因子. 这样就变成了求解行列式中自由变元的数量问题. 将数组转换成行列式,利用高斯消元求解. 代码如下: #include<cstdio> #include<cstring> #include<vector> #inclu…
题目链接 题意:给定一个\(n\times m\)的矩阵,每次可以向→↓←移动一格,也可以原地不动,求从\((x,y)\)到最后一行的期望步数. 此题标签\(DP\) 看到上面这个肯定会想到 方法一: \(f[i][j]\)表示表示从\((x,y)\)走到\((i,j)\)的期望步数,正推 方法二: \(f[i][j]\)表示从\((i,j)\)走到最后一行的期望步数,倒推 事实上,方法二更优秀. 因为如果用方法一,我们要求的答案就是\(\frac{\sum f[\text{最后一行}][\te…
点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期望值最小. 一个贪心的思想 由于贪心的思想,我们肯定是给期望访问次数最大的边编号为\(1\),第二大的编号为\(2\),第三大的编号为\(3\),以此类推. 那么我们应该怎么求出边的期望呢? 由于边的期望可以由点的期望转化得来,因此只要求出了点的期望,就能求出边的期望. 那么怎么求出点的期望呢? 这…
祭一下第一道独立做出来的高斯消元(虽然在各大佬看来都是水题...) 首先这道题给了你n+1个一次方程,n个未知数 其中有一个方程是错误的 求解在合法的前提下最大的未知数是多少... 显然高斯消元... 关注到\(n≤100\)所以\(n^4\)的算法是极限 高斯消元复杂度是\(n^3\)所以我们可以暴力枚举那个方程是错误的 之后判断合法性即可... 总之也不是很难啊,关键是不要忘记illegal...刚开始程序末尾的illegal忘了然后就Subtask2 WA了一个点... 直接看代码直观一点…
题目传送门 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 思路:很显然,我们肯定希望经过次数最多的边的标号最小,但是由于边的数量可能很多,而且好像也不存在什么很好转移的东西,那么我们就需要考虑点. 假设E[X]…
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 如果99扔到100 那么只有1能走 扔其他的都要再扔一次      问从1走到100的扔骰子个数的期望 一篇讲的很好的题解 个人觉得,这道题期望没有可以加减的性质,(n不一定是从n-1过来的),所以不能采用这道题通过累加的递推.而每种状态如果写成式子,会发现$dp[100]$是已知的,而其他所有值都…
求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define N 10100 5 typedef long long ll; 6 int n; 7 bool zero; 8 ll a[N]; 9 10 void Gauss(){//高斯消元求线性基 11 int i,k=1;//k标记当前是第几行 12 ll j=(ll)1<<62;//注意不是63,lo…
原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程. $n\leq 100$ 注:本题对输入数值大小貌似没有说明限制. 题解 高精度高斯消元啊,去写.去写.写写写写写写写写写写写写写写写写写写!! 然后就可以写出来了. 下面讲故事. 那是 2017 年 7 月. 呀!高精度高斯消元裸题! 当时还不会 FFT . 去年暑假花了一个星期的零碎时间搞了一…
Gauss算法,称为高斯消元算法,用来解决n元一次方程,在解决线性方程问题起着重要作用. 简述 运用高斯消元的方法,我们可以在O(n3)的时间求出n元线性方程,但是由于时间复杂度的原因,请注意题目数据范围的提示. 高斯消元三大定理(在小学就学过了吧): 1.两个方程互换位置,解不变: 2.一个方程进行加减乘除,解不变: 3.一个方程乘上数k加上另一个方程,解不变: 这便是我们解决的基础: 过程: 这里给出luogu例题链接,这样方便寻找: 我们这里不用luogu的样例示范(因为不是整数好麻烦),…