logistic regression教程1】的更多相关文章

在线性拟合的基础上,我们实现logistic regression. 如前所述,样本集是 {x1,y1},{x2,y2},...,{xn,yn}[1] 其中,xi=[1,xi,1,xi,2,xi,3,...,xi,k]T,且yi∈(0,1).注意,这里对yi有值上的要求,必须如此,如果值不再这个区间,要以归一化的方式调整到这个区间.对于分类问题,则yi的取值或者是0,或者是1,也就是yi∈{0,1}. 当然,从严格的意义上说,logistic regression拟合后,yi的值只能无限地逼近0…
实现线性拟合 我们用python2.7实现上一篇的推导结果.请先安装python matplotlib包和numpy包. 具体代码如下: #!/usr/bin/env python #! -*- coding:utf-8 -*- import matplotlib.pyplot as plt from numpy import * #创建数据集 def load_dataset(): n = 100 X = [[1, 0.005*xi] for xi in range(1, 100)] Y =…
ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/su…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,Stanford CS231n等在线课程和Tutorial,同一时候也參考了大量网上的相关资料(在后面列出). 前言 本文主要介绍逻辑回归的基础知识.文章小节安排例如以下: 1)逻辑回归定义 2)如果函数(Hypothesis func…
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数…
Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只让最靠近中间分割线的那些点尽量远离,即只用到那些"支持向量"的样本--所以叫"支持向量机". ② SVM可以处理非线性的情况 即,比Logistic更强大的是,SVM还可以处理非线性的情况.​ ③Logistic regression 和 SVM本质不同在于loss f…
Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma(-z)=1 \] gradient: \[ \frac{\partial\sigma(z)}{\partial z} = \sigma(z)[1-\sigma(z)] \] 由性质1 可知, \[ \frac{\partial\sigma(z)}{\partial z} = \sigma(z) \s…
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其理论部分参考:http://www.cnblogs.com/ljy2013/p/5129610.html 下面我们跟随我的demo来一步一步解剖源码,首先来看一下我的demo: package org.apache.spark.mllib.classification import org.apac…
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法. Reference: denny的学习专栏  // 臭味相投的一个博客 Xml保存图片的方法和读取的方式. Mat显示内部的多个图片. Mat::t() 显示矩阵内容. 本文用它来进行手写数字分类. 在opencv3.0中提供了一个xml文件,里面存放了40个样本,分别是20个数字0的手写体和2…
Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2.2.1 Interpreting hypothesis output. 2.3 Decision boundary. 2.3.1 Non-linear decision boundaries. 2.4 Cost function for logistic regression. 2.4.1 A convex logistic r…