[bzoj2982]combination_卢卡斯】的更多相关文章

Combination bzoj-2982 题目大意:求$C_n^m/%10007$. 注释:$1\le n,m\le 2\cdot 10^9$. 想法:裸卢卡斯定理. 先处理出$mod$数之内的阶乘和阶乘的逆元. 然后用$Lucas$直接算即可. Code: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define mod 10007 usin…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2982 卢卡斯定理裸题: 原准备1A来着,结果输出忘了加回车! 预处理阶乘或者现求都可以,感觉学到了一种现求 C 的写法呢. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long ll; ; ll fac[]; void i…
题目链接 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4928 与HDU 5794相似 博客链接 题意:在一个棋盘状的网格中,有很多障碍点,求从(1,1)走到(n,m)的方法数? 思路:对障碍点进行排序,两重循环去重,加上卢卡斯定理快速求组合数: 代码如下: #include <iostream> #inclu…
看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…… 在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的…
[BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数. 第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. 1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R. Output 输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果. Samp…
题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数\(T(T≤10)\),表示数据组数 第二行开始共\(T\)行,每行三个数\(n m p\),意义如上 输出格式: 共\(T\)行,每行一个整数表示答案. 输入输出样例 输入样例#1: 2 1 2 5 2 1 5 输出样例#1: 3 3 题解 卢卡斯定理模板题 卢卡…
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个整数T(T\le 10T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 [输出格式] 共T行,每行一个整数表示答案. [输入样例] 21 2 52 1 5 [输出样例] 33 >>>>分析 emmmm模板题还是不用分析了吧 卢卡斯定理解决的就是组合数C(n,m…
题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人 ,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某 个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. 输入 输入的第一行包含一个正整数P,表示模: 第二行包含两个整整数n和m,分别表示小E从商…
题目描述 在一个\(k\)维空间中,每个整点被黑白染色.对于一个坐标为\((x_1,x_2,\ldots,x_k)\)的点,他的颜色我们通过如下方式计算: 如果存在一维坐标是\(0\),则颜色是黑色. 如果这个点是\((1,1,\ldots,1)\)(每一维都是\(1\)),这个点的颜色是白色 如果这个点的\(k\)个前驱(任取一维坐标减\(1\))中的白点有奇数个,那么这个点的颜色就是白色,否则就是黑色 给出一个\(k\)维超矩形,求这个矩形内的白点个数. \(k\leq 9,1\leq l_…
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2}^k\binom{a_{b_{i-1}}}{a_{b_i}}\mod 2>0 \] 答案对\({10}^9+7\)取模. \(n\leq211985,a_i\leq 233333\) \(\forall i\neq j,a_i\neq a_j\) 题解 水题. 先忽略长度\(\geq 2\)这个条…
卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cdots+{b_k}^{p_k}\) 则\(C_m^n\equiv\prod{C_{a_i}^{b_i}}(mod~p)\) 扩展卢卡斯定理 好像这也不是什么定理,只是一个计算方法 计算\(C_m^n~mod~p\),其中\(p={p_1}^{q_1}\times{p_2}^{q_2}\times\c…
哇,这道题真的好好,让我这个菜鸡充分体会到卢卡斯和欧拉函数的强大! 先把题意抽象出来!就是计算这个东西. p=999911659是素数,p-1=2*3*4679*35617 所以:这样只要求出然后再快速乘法就行了. 那好,怎么做呢? 有模运算的性质得到  然后就是卢卡斯原理. 先把卢卡斯原理放这里: void init(int mod){ //对mod取余后,一定小于mod,因此把mod的阶乘存起来就够用 f[] = ; ; i <= mod; i++){ f[i] = f[i - ] * i…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…
[UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情况下可以考虑使用卢卡斯定理. 卢卡斯定理写出来是\(Lucas(n,m)=Lucas(n/K,m/K)*Lucas(n\%K,m\%K)\) 显然只要有任何一个\(Lucas(n\%K,m\%K)=C_{n\%K}^{m\%K}\)是\(K\)的倍数那么当前数就会是\(K\)的倍数.因为\(K\)是…
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑一个组合数在什么情况下会是一个奇数.\(Lucas(n,m)\equiv Lucas(n/2,m/2)*Lucas(n\%2,m\%2)\).后面这个东西一共只有\(4\)种取值,我们大力讨论一下:\(C_{0}^0=1,C_{0}^1=0,C_1^0=1,C_1^1=1\).既然是一个奇数,证明\…
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. 令\(f(n,k)\)表示答案. \[\begin{aligned} f(n,k)&=\sum_{i=0}^k {n\choose i}\\ &=\sum_{i=0}^k {n/p\choose i/p}*{n\%p\choose i\%p}\\ &=\sum_{x=0}^{p-1}{…
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\displaystyle \sum_{i=0}^a{a\choose i}\sum_{j=0}^{i-1}{b\choose j}\). 完美\(TLE\). 先考虑特殊点的情况,如果\(a=b\),那么显然两者输赢的情况反过来是一一对应的,所以答案就是总情况减去平局的情况除二,而总方法就是\(\displays…
[BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大,提前给他\(A_i\)个就好了. 假如没有小于的限制的话,那么就是经典的隔板法直接算答案. 如果提前给完之后,还剩\(M\)个球,要放进\(n\)个盒子,答案就是\(\displaystyle{M+n-1\choose n-1}\) 然而有一个小于的限制很烦人.发现数量很少,那么直接爆枚子集,强制一…
[BZOJ2142]礼物(拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 显然如果\(\sum w_i>n\)无解. 否则答案就是:\(\displaystyle \prod_{i=1}^m{n-\sum_{j=0}^{i-1}w_j\choose w_i}\). 因为并没有保证\(P\)是质数,所以需要用到拓展卢卡斯. #include<iostream> #include<cstdio> using namespace std; #define ll long long l…
[SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k(就是n的所有约数),并且对于每一个k都要用一个组合数算出其情况数(读题:不过具体是哪k分之一.这句话说明我们可以从n中取出任意k个字,所以情况数就是\(C(_n^k)\) )(然后因为我们求的组合数范围有点大,所以需要用卢卡斯定理来求组合数(接下来我们会发现模数其实比较小)).但是这道题目把所有情…
Unknown Treasure 参考链接 : https://www.cnblogs.com/linyujun/p/5199684.html 卢卡斯定理 : C(n, m) % p  =  C(n / p, m / p) * C(n%p, m%p) % p: 孙子定理 :https://blog.csdn.net/yskyskyer123/article/details/49032227 先用卢卡斯求出每个素数对大组合数的取模, 再用孙子定理将他们合并: #include<cstdio> t…
证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=lucas(n/p,m/p)*C(n%p,m%p) 将n,m很大的数压成求两个小于p的组合数的乘积 数学上的卢卡斯定理两种形式:(n,m用p进制表示) 上代码: //打表 void init(ll x){ rec[]=; For(i,,x)mulmod(rec[i],rec[]*i); } //逆元 ll…
P4720 [模板]扩展卢卡斯 题目背景 这是一道模板题. 题目描述 求 C(n,m)%P 其中 C 为组合数. 输入输出格式 输入格式: 一行三个整数 n,m,p ,含义由题所述. 输出格式: 一行一个整数,表示答案. 输入输出样例 输入样例#1: 5 3 3 输出样例#1: 1 输入样例#2: 666 233 123456 输出样例#2: 61728 说明 1≤m≤n≤1018,2≤p≤1000000 ,不保证 p 是质数. sol:ExLucas模板 可以做P不是质数的组合数 具体方法简单…
记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18,p<=1e5 看到没有,n和m这么大,但是p却很小,我们要利用这个p (数论就是这么无聊的东西,我要是让n=1e100,m=1e100,p=1e100你有本事给我算啊(°□°),还不是一样算不出来) 然后,我们著名的卢卡斯(Lucas)在人群中站了出来(`・д・´)说:“让老子来教你这题” 卢卡斯说:…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3037 卢卡斯定理模板——大组合数取模 #include<iostream> #include<cstdio> using namespace std; long long t,n,m,p,s; long long mi(long long a,long long k) { ; while(k) { )s=s*a%p; k>>=; a=a*a%p; } return s; } l…
P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱我帮你) Pre 好的我们继续恶补数学 首先复习一下 \(O(N)\) 求质数逆元的方法\[inv[1] = 1\]\[inv[i] = (p - p / i) * inv[p \% i] \% p (i >= 2)\] LL inv[maxn]; void get_inv(LL n){ inv[1…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5446 C(n, m) % (p1*p2*p3*...*pk)的值 其实这个就是中国剩余定理最后算出结果后的最后一步求余 那C(n, m)相当于以前我们需要用中国剩余定理求的值 然而C(n, m)太大,我们只好先算出 C(n, m) % p1 = r1 C(n, m) % p2 = r2 C(n, m) % p3 = r3 . . . C(n, m) % pk = rk 用Lucas,这些r1,r2,…
卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m_i\)为\(m\)的因式分解,\(n_i\)为\(n\)的因式分解,\(p\)为质数. 由\(Edward~Lucas\)在1878年提出. 证明: 首先我们将\(C^i_p\)进行一下变式即\(C^i_j = \frac{p!}{i!(p - i)!}\),提出来一个\(\frac{p}{i}\…
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) 表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数 \(T( T\le 10 )\),表示数据组数 第二行开始共 \(T\) 行,每行三个数 \(n,m,p\),意义如上 输出格式: 共T行,每行一个整数表示答案. 输入输出样例 输入样例#1: 2 1 2 5 2 1…
[BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相当于是上面那坨东西的结果对于\(\varphi\)的取值. 但是\(\varphi\)不是质数,不好直接\(Lucas\)定理,把\(\varphi\)分解质因数之后, 直接\(CRT\)合并结果就好了,所以这个就是\(ex\_Lucas\) #include<iostream> #include…