bzoj3527】的更多相关文章

[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\] 令\(Ei=Fi/qi\),求\(Ei\). Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1…
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\) \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}\) \(\sum\limits _{i=1}^{j-1} q_i*\frac{1}{(j-i)^2}\) fft都能算出来 \(\sum\limits _{i=j+1}^{n…
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 (题目链接) 题意 $${F_i=\sum_{j<i} {\frac{q_iq_j}{(i-j)^2}}   -   \sum{j>i} {\frac{q_iq_j}{(i-j)^2}}}$$ 给出${q_i}$求${E_i=F_i/q_i}$ Solution 这能一眼秒是卷积w(゚Д゚)w,我怎么完全看不出来,这太强了吧.. 两边同时约掉一个${q_i}$,式子就变的和谐了很多:$${…
[BZOJ3527][ZJOI3527]力 题面 bzoj 洛谷 题解 易得 \[ E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2} \] 设\(f_i=q_i\),\(g_i=i^2\) \[ E_i=\sum_{j<i}f_jg_{i-j}-\sum_{j>i}f_jg_{i-j} \] 将\(f\)翻转得到\(h\) \[ E_i=\sum_{j<i}f_jg_{i-j}-\sum_{j<…
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\limits_{i>j}\frac{q_iq_j}{(i-j)^2}$.求所有的$E_i=\frac{F_i}{q_i}$. 注释:$1\le n\le 10^5$,$0\le q\le 10^9$. 想法:我们可以把$F_i$中每一项上的$q_i$删掉因为我们求得$E_i$除掉了. 进而我们考虑如何求解$F…
题目: BZOJ3527 分析: FFT应用第一题-- 首先很明显能把\(F_j\)约掉,变成: \[E_j=\sum _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\] 然后去膜拜题解,我们知道两个多项式相乘的方式如下: \[C_j=\sum_{i=0}^j A_iB_{j-i}\] 那么,如果把\(E_j\)的表达式化成上面那个形式,就可以用FFT计算了.(不会FFT?戳我:[知识总结]快速傅里叶变换(FFT)) 先看减号前…
BZOJ3527 推出卷积公式FFT求值 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 题意: \(F_{j}=\sum_{i<j} \frac{q_{i} q_{j}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i} q_{j}}{(i-j)^{2}}\) 求\(E_i=F_i/q_i\) 题解: 推公式: \[ E_i=F_i/q_i\\ E_i=\sum_{j=i}^{n}\frac{q_j}{(i…
无题面神题 原题意: 求所有的Ei=Fi/qi. 题解: qi被除掉了,则原式中的qj可以忽略. 用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i时为负) 则求E[j]就是多项式乘法了. 因为是FFT,所以b的下标要增加到0及以上. 这题时限有30s,比某题友好多了. 代码: type xs=record x,y:double; end; arr=..]of xs; var e,t:arr; a:..]of arr; n,m,i:longint; fu…
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; ; ); struct node{ double real,imag; ;} node operator +(const node &x){return (node){real+x.real,imag+x.im…
2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include<bits/stdc++.h> #define inf 1000000000 #define ll long long #define N 500005 using namespace std; int read(){ ,f=;char ch=getchar(); ;ch=getchar();} +c…
[问题描述]给出n个数qi,给出Fj的定义如下:令Ei=Fi/qi.试求Ei.[输入格式]输入文件force.in包含一个整数n,接下来n行每行输入一个数,第i行表示qi.[输出格式]输出文件force.out有n行,第i行输出Ei.与标准答案误差不超过1e-2即可.[样例输入]54006373.88518415375036.4357591717456.4691448514941.0049121410681.345880[样例输出]-16838672.6933439.7937509018.566…
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 输出 n行,第i行输出Ei.与标准答案误差不超过1e-2即可. 样例输入 5 4006373.885184 15375036.435759 1717456.469144 8514941.004912 1410681.345880 样例输出 -16838672.693 3439.793 7509018…
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推了一个多小时终于发现了一个很巧妙的方法,首先问题的关键在于后半个式子,因为显然前半个式子很容易想到卷积的形式,那么直接FFT就好了,但是后半部分不好考虑,一般肯定是通过类似换元的做法化到后来得出结论,到中间有一步就有点难度,那个地方我一直卡.后来突然想到,既然前半部分i<j时那么好处理,那么i>j…
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j)2ans_i=\sum_{i<j}\frac{a_i}{(i-j)^2}-\sum_{i>j}\frac{a_i}{(i-j)^2}ansi​=∑i<j​(i−j)2ai​​−∑i>j​(i−j)2ai​​ 思路: 考虑分开求减号前后的两组和. 前面的直接是一个卷积的形式,后面的可以…
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过1e-2即可. 输入样例 5 4006373.885184 15375036.435759 1717456.469144 8514941.004912 1410681.345880 输出样例 -16838672.693 3439.793 7509018.566 4595686.886 1090304…
"FFT还不是随手写?"我终于能说这样的话了இwஇ 原题: 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei.   FFT嘛,直接推公式 然后就变成俩卷积了,FFT即可 代码: #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> using namespace std; ,mk=; c…
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei.      以n=4为例: 设数组a[],b[] 令c[]=a[]反转 y[]=c[]*b[] 那么E[i]=x[i]-y[n-i-1] #include<cmath> #include<cstdio> #include<algorithm> using namespace std; #define…
3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 899[Submit][Status][Discuss] Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei.   Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000     Output…
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 参考:https://www.cnblogs.com/iwtwiioi/p/4126284.html 暴力肯定会TLE,考虑转换成卷积形然后FFT优化. (因为不是markdown所以算式截图自参考博客,如有不妥删……) 首先算E可以把F里的所有qj全部拿下,设f[i]=q[i],g[i]=1/i/i(g[0]=0表示不存在…
题面 Bzoj Luogu 题解 先来颓柿子 $$ F_i=\sum_{j<i}\frac{q_iq_j}{(i-j)^2}-\sum_{j>i}\frac{q_iq_j}{(i-j)^2} \\=q_i(\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}) $$ 所以 $$ E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(j-i)^2}…
题面 传送门 思路 把要求的公式列出来: $E_i=\frac{F_i}{q_i}=\sum_{j=1}^i\frac{q_j}{\left(i-j\right)^2}-\sum_{j=i+1}^n\frac{q_j}{\left(i-j\right)^2}$ 令$x_i=\frac1{i^2}$,那么 $E_i=\sum_{j=1}^iq_jx_{i-j}-\sum_{j=i+1}^nq_jx_{j-i}$ 那我们再令$p_i=q_{n-i+1}$,那么 $E_i=\sum_{j=1}^iq_…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们可以把式子整理成这个样子再套上FFT就成功了. $$E_i=\sum_{j<i}\frac{q_j}{(j-i)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}$$ $$E_i=\sum_{j=0}^{i-1}\frac{q_j}{(j-i)^2}^2-\sum_{j=0}^{n…
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 今天肿么这么颓废啊...心态崩了 首先我们得出Ei=Fi/qj,然后我们设f[i]=1/i/i,那么我们把刚才的式子转化一下,就是ans[j]=f[i]*g[j-i]-f[i]*g[i-j](sigma省略了)前面的东西是一个卷积,但是后面的东西加出来是一个2*i-j,不是一个固定的值,那么我们翻转一下第二个g,变成了-f[i]*g[n-i+j],现在i+n-i+j=n+j是一个固定的值(似…
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑这两个数组: \(a:q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5\) \(b:-\frac{1}{16} \quad -\frac{1}{9} \quad -\frac{1}{4} \quad -\frac{1}{1} \quad 0 \quad \frac{1}{…
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i>j} \frac{q_iq_j}{(i-1)^2} \] 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1e-2即可. Samp…
[BZOJ1861][BZOJ3224] [BZOJ2733][BZOJ1056] [BZOJ2120][BZOJ3673] [BZOJ1833][BZOJ1026] [BZOJ3209][BZOJ1096] [BZOJ1597][BZOJ1492] [BZOJ3156][BZOJ3437] [BZOJ3675][BZOJ1911] [BZOJ1996][BZOJ1801] [BZOJ1806][BZOJ1207] [BZOJ3172][BZOJ2594] [BZOJ2157][BZOJ1054…
好吧,其实我并没有深入运用fft,只会优化卷积 听说fft经常和生成函数结合在一起………………oi真是迅猛发展,我真是与时代脱节了…… 关于fft的学习推荐直接去看算法导论,写得非常清楚 主要弄懂n次单位根的相关性质定理(消去定理,折半定理)即可,当然也可以直接背代码…… bzoj2179 模板题,fft可以优化高精度乘法 顺便说一句,pascal可以定义operator,但跑得慢 这题我跑了10s…… uses math; type point=record x,y:double; end;…
题目大意:给出n个数qi,定义 Fj为        令 Ei=Fi/qi,求Ei.      其实这道题就是看到有FFT模板才觉得有必要学一下的...    所以实际上就是已经知道题解了... = =.     所以问题就是求这两个多项式相乘的系数.   这里咱卷积不太熟悉,所以咱们来证明一下这个结论显然还是不错的.   首先咱们设 f(x)(k) 表示f(x)的 第k项的系数(就是 x^k-1 那一项)   那么首先了解下卷积,如果f,g是一个序列(这指的是其系数构成的序列),那么卷积S也是…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
原文链接http://www.cnblogs.com/zhouzhendong/p/8762639.html 题目传送门 - BZOJ3527 题意 给出长度为$m$的序列$q_{1..m}$,让你输出长度为$m$的序列$E_{1..m}$. 其中: $$E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{m}\frac{q_j}{(i-j)^2}$$ 题解 我们设 $$f_i=q_i,g_i=\frac 1{i^2}(g_0=0,且对于i…