原文链接:在opencv3中的机器学习算法练习:对OCR进行分类 本文贴出的代码为自己的训练集所用,作为参考.可运行demo程序请拜访原作者. CNN作为图像识别和检测器,在分析物体结构分布的多类识别中具有绝对的优势.通多多层卷积核Pooling实现对物体表面分布的模板学习,以卷积核的形式存储在网络中.而对于统计特征,暂时没有明确的指导规则. opencv3中的ml类与opencv2中发生了变化,下面列举opencv3的机器学习类方法实例,以随机森林为例. 代码: //使用OpenCV随机森林训…
2.OpenCV函数使用 OpenCV提供了随机森林的相关类和函数.具体使用方法如下: (1)首先利用CvRTParams定义自己的参数,其格式如下 CvRTParams::CvRTParams(int max_depth, int min_sample_count, float regression_accuracy, bool use_surrogates, int max_categories, const float* priors, bool calc_var_importance,…
随机森林顾名思义,是用随机的方式建立一个森林.简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.在训练每棵树的节点时,使用的特征是从所有特征中按照一定比例随机地无放回的抽取的,根据Leo Breiman的建议,假设总的特征数量为M,这个比例可以是sqrt(M),1/2sqr…
#In the next recipe, we'll look at how to tune the random forest classifier. #Let's start by importing datasets: from sklearn import datasets X, y = datasets.make_classification(1000) # X(1000,20) #y(1000) 取值范围[0,1] from sklearn.ensemble import Rando…
随机森林算法是机器学习.计算机视觉等领域内应用较为广泛的一个算法.它不仅可以用来做分类(包括二分类和多分类),也可用来做回归预测,也可以作为一种数据降维的手段. 在随机森林中,将生成很多的决策树,并不像在决策树那样只生成唯一的树.随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,每个树都是一个独立的判断分支,互相之间彼此独立.随机森林在运算量没有显著提高的前提下提高了预测精度,并且对多元公线性不敏感,判断结果缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量…
一.决策树(类型.节点特征选择的算法原理.优缺点.随机森林算法产生的背景) 1.分类树和回归树 由目标变量是离散的还是连续的来决定的:目标变量是离散的,选择分类树:反之(目标变量是连续的,但自变量可以是分类的或数值的),选择回归树: 树的类型不同,节点分裂的算法和预测的算法也不一样: 分类树会使用基于信息熵或者gini指数的算法来划分节点,然后用每个节点的类别情况投票决定预测样本的分类:回归树会使用最大均方误差来划分节点,然后用每个节点中样本的均值作为测试样本的预测值: 2.决策树的算法:ID3…
原文::Multi-Forest:A chameleon in tracking,CVPR2014  下的蛋...原文 使用随机森林的优势,在于可以使用GPU把每棵树分到一个流处理器里运行,容易并行化实现. OpenCV中的使用:OpenCV:使用 随机森林与GBDT 随机森林的优点:http://www.cnblogs.com/wentingtu/archive/2011/12/13/2286212.html 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高…
1.随机森林原理介绍 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标.简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.在训练每棵树的节点时,使用的特征是从所有特征中按照一定比…
CART 分裂规则 将现有节点的数据分裂成两个子集,计算每个子集的gini index 子集的Gini index: \(gini_{child}=\sum_{i=1}^K p_{ti} \sum_{i' \neq i} p_{ti'}=1-\sum_{i=1}^K p_{ti}^2\) , 其中K表示类别个数,\(p_{ti}\)表示分类为i的样本在子集中的比例,gini index可以理解为该子集中的数据被错分成其它类别的期望损失 分裂后的Gini index: \(gini_s= \fra…
使用像Scikit-Learn这样的库,现在很容易在Python中实现数百种机器学习算法.这很容易,我们通常不需要任何关于模型如何工作的潜在知识来使用它.虽然不需要了解所有细节,但了解机器学习模型是如何工作的仍然有用.这使我们可以在模型表现不佳时进行诊断,或者解释模型如何做出决策,如果我们想让别人相信我们的模型,这是至关重要的. 在本文中,我们将介绍如何在Python中构建和使用Random Forest.除了查看代码之外,我们还将尝试了解此模型的工作原理.因为由许多决策树组成的随机森林,我们首…