数据集 house.csv 数据概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.LinearRegression import org.apache.spark.sql.SparkSession import org.apache.spark.{SparkCon…
线性回归算法,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法. 1. 梯度下降法 线性回归可以使用最小二乘法,但是速度比较慢,因此一般使用梯度下降法(Gradient Descent),梯度下降法又分为批量梯度下降法(Batch Gradient Descent)和随机梯度下降法(Stochastic Gradient Descent).批量梯度下降法每次迭代需要使用训练集里面的所有数据,当训练集数据量较大时,速度就很慢:随机梯度下降法每次迭代只需要一个…
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.{IsotonicRegression, LinearRe…
数据集 iris.data 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.clustering.{KMeans, LDA} import org.apache.spark.SparkConf import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.sql.SparkSession i…
1)机器学习模型理解 统计学习,神经网络 2)预测结果的衡量 代价函数(cost function).损失函数(loss function) 3)线性回归是监督学习…
1)回归与分类算法的区别 回归的预测结果是连续的,分类的预测结果是离散的. 2)spark实现的回归算法有: 3)通过相关系数衡量线性关系的程度…
 数据集 iris.data 数据集概览 代码 package org.apache.spark.examples.hust.hml.examplesforml import org.apache.spark.ml.clustering.{KMeans, LDA} import org.apache.spark.SparkConf import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.sql.Spar…
第1章 初识机器学习 在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题. 1-1 导学 1-2 机器学习概述 1-3 机器学习核心思想 1-4 机器学习的框架与选型.. 第2章 初识MLlib 本章中,将介绍Spark的机器学习库,对比Spark当前两种机器学习库(MLLib/ML)的区别,同时介绍Spark机器学习库的应用场景以及行业应用优势. 2-1 MLlib概述 2-2 MLlib的数据结构 2-3 M…
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义 1.2 分类 1.在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似.要对他们中的一个用户推荐一个未知物品, 便可选取若干与其类似的用户并根据他们的喜好计算出对各个物品的综合得分,再以得分来推荐物品.其整体的逻辑是,如果其他用户也偏好某些物品,…
1)简介 自变量,因变量,线性关系,相关系数,一元线性关系,多元线性关系(平面,超平面) 2)使用线性回归算法的前提 3)应用例子 沸点与气压 浮力与表面积…