numpy数组的分割与合并】的更多相关文章

合并 np.newaxis import numpy as np a=np.array([1,2,3])[:,np.newaxis]#变成列向量 b=np.array([4,5,6])[:,np.newaxis]#变成列向量 c=np.vstack((a,b)) #vertical stack d=np.hstack((a,b))#horizontal stack print(a.shape ,b.shape) # ((3,1),(3,1)) print(c.shape) # (6,1) pri…
基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中numpy数组的合并有很多方法,如 - np.append()  - np.concatenate()  - np.stack()  - np.hstack()  - np.vstack()  - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没…
摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray.ndim the number of axes (dimensions) of the array. In the Python world, the number of dimensions is referred to as rank. ndarray.shape the dimensions…
在介绍数组的组合和分割前,我们需要先了解数组的维(ndim)和轴(axis)概念. 如果数组的元素是数组,即数组嵌套数组,我们就称其为多维数组.几层嵌套就称几维.比如形状为(a,b)的二维数组就可以看作两个一维数组,第一个一维数组包含a个一维数组,第二个一维数组包含b个数据. 每一个一维线性数组称为一个轴.二维数组的第一个轴(axis=0)就是以数组为元素的数组,第二个轴(axis=1)就是数组中的数组.因此第一个轴的方向就是沿着列的方向,第二个轴的方向沿着行的方向. 这似乎有点反直觉,毕竟我们…
数组的创建 数组的访问 数组的合并 数组的分割 数组创建 >>> import numpy as np 创建一维数组 >>> x = np.arange(10) >>> x array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 创建二维数组 >>> X = np.arange(10).reshape(2, 5) >>> X array([[0, 1, 2, 3, 4], [5, 6, 7, 8,…
时间飞逝,马上就要到2018年了,今天我们将要学习的是IO流学习的最后一节,即总结回顾前面所学,并学习一个案例用于前面所学的实际操作,下面我们就开始本节的学习: 一.原理与概念 一.概念流:流动 .流向 从一端移动到另一端 源头与目的地程序 与 文件|数组|网络连接|数据库 ,以程序为中心 二.IO流分类1.流向: 输入流与输出流2.数据:字节流:二进制,可以一切文件 包括 纯文本 doc 音频.视频等等 字符流:文本文件,只能处理纯文本3.功能:节点:包裹源头 处理:增强功能,提供性能三.字符…
创建一个2*2的数组,计算对角线上元素的和 import numpy as np a = np.arange(4).reshape(2,2) print (a) #[[0 1] # [2 3]] n1 = a[0,0] print (n1) # 0 n2 = a[0,1] print (n2) # 1 n3 = a[1,0] print (n3) # 2 n4 = a[1,1] print (n4) # 3 sum_1 = n1 + n3 print (sum_1) # 2 sum_2 = n2…
Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 ravel 返回展开数组 numpy.reshape numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr,…
# -*- coding: utf-8 -*- """ 主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新. Created on Mon Aug 20 23:37:26 2018   @author: Dev """   import numpy as np from datetime import datetime import random     对a,b两个列表的相同位的元素进行运算求和: # 纯Python def…
一.numpy简介 numpy官方文档:https://docs.scipy.org/doc/numpy/reference/?v=20190307135750 numpy是Python的一种开源的数值计算扩展库.这种库可用来存储和处理大型numpy数组,比Python自身的嵌套列表结构要高效的多(该结构也可以用来表示numpy数组). numpy库有两个作用: 区别于list列表,提供了数组操作.数组运算.以及统计分布和简单的数学模型 计算速度快,甚至要由于python内置的简单运算,使得其成…