快速排序有三大要素 分别是 第一:找基准值--key 第二:分区 第三:比较数字大小 先来看下快速排序流程: 基准值key选取了第一个元素78 基准值是可以任意一个元素 因为选择了最左边的数据,那么就从右边开始遍历 经过上一轮变化key变成了78 位置也变了,开始从key的左边遍历,当 i=j的时候,结束遍历,开始分区 分区后,每个区再进行上面的比较 继续分区,直到分区里面只有两个或者3个元素,分区后,每个分区继续比较 现在每个分区已经最小了,获得最后排列的值 Python实现过程(正序),一共…
0.导语 本节为手撕代码系列之第一弹,主要来手撕排序算法,主要包括以下几大排序算法: 直接插入排序 冒泡排序 选择排序 快速排序 希尔排序 堆排序 归并排序 1.直接插入排序 [算法思想] 每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止. [代码实现] # 直接插入排序 def insert_sort(arr): length = len(arr) for i in range(length): k = i for j in range(k,0,-1): if…
1.基本思想 快速排序有很多种编写方法,递归和分递归,分而治之法属于非递归,比递归简单多了.在这不使用代码演示.下面我们来探讨一下快速排序的递归写法思想吧. 设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它左边,所有比它大的数都放到它右边,这个过程称为一趟快速排序.值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动. 2.python实现 # coding:ut…
1. 前言 算法为王. 想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手:只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习. 文中包含了 十大经典排序算法 的思想.代码实现.一些例子.复杂度分析.动画.还有算法可视化工具. 这应该是目前最全的 JavaScript 十大经典排序算法 的讲解了吧. 2. 如何分析一个排序算法 复杂度分析是整个算法学习的精髓.…
前言 基础知识就像是一座大楼的地基,它决定了我们的技术高度. 我们应该多掌握一些可移值的技术或者再过十几年应该都不会过时的技术,数据结构与算法就是其中之一. 栈.队列.链表.堆 是数据结构与算法中的基础知识,是程序员的地基. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习. 1. 线性表与非线性表 线性表(Linear List):就是数据排成像一条线一样的结构.每个线性表上的数据最多只有前和后两个方向.数组.链表…
1. 前言 算法为王. 想学好前端,先练好内功,只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习. 之所以把归并排序.快速排序.希尔排序.堆排序放在一起比较,是因为它们的平均时间复杂度都为 O(nlogn). 请大家带着问题:快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ? 来阅读下文. 2. 归并排序(Merge Sort) 思想 排序一个数…
第4章 快速排序 4.1 分而治之 "分而治之"( Divide and conquer)方法(又称"分治术") ,是有效算法设计中普遍采用的一种技术. 所谓"分而治之" 就是把一个复杂的算法问题按一定的"分解"方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的解,把各部分的解组成整个问题的解,这种朴素的思想来源于人们生活与工作的经验,也完全适合于技术领域.诸如软件的体系结构设计.模块化设计都是分而治之的具体表现…
javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法) 一.快速排序算法 /* * 这个函数首先检查数组的长度是否为0.如果是,那么这个数组就不需要任何排序,函数直接返回. * 否则,创建两个数组,一个用来存放比基准值小的元素,另一个用来存放比基准值大的元素. * 这里的基准值取自数组的第一个元素. * 接下来,这个函数对原始数组的元素进行遍历,根据它们与基准值的关系将它们放到合适的数组中. * 然后对于较小的数组和较大的数组分别递归调用这个函数. * 当递归结束时,再将较…
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(log_2n\)步,而简单查找最多需要n步 仅当列表是有序的时候,二分查找才管用 python猜数字代码(二分查找) def binarySeach (list,item): low = 0 high = len(list) - 1 while low <= high: mid = (low + high…
二分查找 二分查找又称折半查找,其输入的必须是有序的元素列表.二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止:如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x #python实现二分查找 def binary_search(list,item): low=0 high=len(list)-1 while(low<=high): mid=int((low+hi…