转自:https://blog.csdn.net/wcy23580/article/details/90082221…
CIFAR10 数据集有 50000 张训练图片,10000 张测试图片.现在选择 Batch Size = 256 对模型进行训练. 每个 Epoch 要训练的图片数量:  训练集具有的 Batch 个数:  每个 Epoch 需要完成的 Batch 个数:  每个 Epoch 具有的 Iteration 个数:  每个 Epoch 中发生模型权重更新的次数:  训练  代后,模型权重更新的次数:  不同代的训练,其实用的是同一个训练集的数据.第  代和第  代虽然用的都是训练集的五万张图片,…
一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小,即单次训练使用的样本数 为什么需要有 Batch_Size :batch size 的正确选择是为了在内存效率和内存容量之间寻找最佳平衡. Batch size调参经验总结: 相对于正常数据集,如果Batch_Size过小,训练数据就会非常难收敛,从而导致underfitting. 增大Batch_…
Training TFLearn provides a model wrapper 'DNN' that can automatically performs a neural network classifier tasks, such as training, prediction, save/restore, etc... We will run it for 10 epochs (the network will see all data 10 times) with a batch s…
Batch Size:批尺寸.机器学习中参数更新的方法有三种: (1)Batch Gradient Descent,批梯度下降,遍历全部数据集计算一次损失函数,进行一次参数更新,这样得到的方向能够更加准确的指向极值的方向,但是计算开销大,速度慢: (2)Stochastic Gradient Descent,随机梯度下降,对每一个样本计算一次损失函数,进行一次参数更新,优点是速度快,缺点是方向波动大,忽东忽西,不能准确的指向极值的方向,有时甚至两次更新相互抵消: (3)Mini-batch Gr…
one epoch:所有的训练样本完成一次Forword运算以及一次BP运算 batch size:一次Forword运算以及BP运算中所需要的训练样本数目,其实深度学习每一次参数的更新所需要损失函数并不是由一个{data:label}获得的,而是由一组数据加权得到的,这一组数据的数量就是[batch size].当然batch size 越大,所需的内存就越大,要量力而行 iterations(迭代):每一次迭代都是一次权重更新,每一次权重更新需要batch size个数据进行Forward运…
以下内容都是针对Pytorch 1.0-1.1介绍. 很多文章都是从Dataset等对象自下往上进行介绍,但是对于初学者而言,其实这并不好理解,因为有的时候会不自觉地陷入到一些细枝末节中去,而不能把握重点,所以本文将会自上而下地对Pytorch数据读取方法进行介绍. 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据). class DataLoader(…
转自:https://mp.weixin.qq.com/s/RTv0cUWvc0kuXBeNoXVu_A 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据). class DataLoader(object): ... def __next__(self): if self.num_workers == 0: indices = next(self.sa…
batch 概念:训练时候一批一批的进行正向推导和反向传播.一批计算一次loss mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的. 以下来源:知乎 作者:陈志远 链接:https://zhuanlan.zhihu.com/p/83626029著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. (1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间和每次迭代(ite…
Spark Streaming揭秘 Day20 动态Batch size实现初探(上) 今天开始,主要是通过对动态Batch size调整的论文的解析,来进一步了解SparkStreaming的处理机制,因为比较偏理论,么有代码演示. 缘起 从目前的业务发展来看,线上处理目前来看已经越来越重要,而一个突出的矛盾就是,传统框架Oracle+j2ee的框架下,存在一个致命的问题,就是无法突破单台机器的局限,可能容纳此刻流入的数据,于是分布式流处理程序越来越火热. 流处理的核心是追求更快的处理速度.但…