应用统计学-回归分析 拟合度使用r^2和Se来检验. 显著性检验中,对于线性model使用ANOVA,对于单独的回归系数使用t检验. 最小二乘法.贝叶斯和最大似然都可用于求回归参数,最小二乘法是最小化残差平方和. 基于model影响变差的因素有随机误差和自变量x. 因为R^2=SST/SSE,所以取值在(0,1).而Adjusted R^2=MST/MSE,其中SST自由度是n-1,SSR自由度是k,则SSE自由度是n-k-1. 多重相关系数 (multiple correlation coef…
为什么.h文件中不能定义全局变量? 原因: 存在多次创建变量.如果头文件中可以定义全局变量,那么每个包含该头文件的文件里都会有该全局变量的定义.因为C语言的include是直接将文件嵌入到include这个地方的. 解决办法: ​在头文件使用 extern 来声明该全局变量,然后在任意一个.cpp文件中定义该变量.全局变量是存放在静态区的.会被默认初始化为0. 原文:https://blog.csdn.net/jchnlau/article/details/49774599 C语言:全局变量在多…
dummyVars函数:dummyVars creates a full set of dummy variables (i.e. less than full rank parameterization----建立一套完整的虚拟变量 先举一个简单的例子: survey<-data.frame(service=c("very unhappy","unhappy","neutral","happy","very…
翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析及其优势,重点总结了应该掌握的线性回归.逻辑回归.多项式回归.逐步回归.岭回归.套索回归.ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素. [编者按]回归分析是建模和分析数据的重要工具.本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归.逻辑回归…
背景 之前所讨论的SVM都是非常严格的hard版本,必须要求每个点都被正确的区分开.但是,实际情况时很少出现这种情况的,因为噪声数据时无法避免的.所以,需要在hard SVM上添加容错机制,使得可以容忍少量噪声数据.   "软"化问题 软化SVM的思路有点类似正规化,在目标函数添加错误累加项,然后加一个系数,控制对错误的容忍度,并且在约束中添加错误容忍度的约束,形式如下:   现在问题就变成了(d+1+N)个变量和2N个约束.ξ用来描述错误的容忍度.C是常量,用来控制容忍度.C越大,由…
Problem G: Check The Check Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 10  Solved: 3[Submit][Status][Web Board] Description Your task is to write a program that reads a chessboard configuration and identifies whether a king is under attack (in chec…
https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf-8&lm=0&od=0 SPSS 18.0由17个功能模组组成: Base System 基础程式 Advanced Models 高等统计模组(GEE/GLM/存活分析) Regression Models 进阶回归模组 Custom Tables 多变量表格 Forecasting 时间序…
rm(list = ls()) A = read.csv("data115.csv") fm = lm(y~x1+x2,data = A) coef(fm) A.cooks = cooks.distance(fm) #计算cook距离 new_A = cbind(A,A.cooks) #把原始数据与cook距离放在一个数据框中查看 new_A[order(A.cooks,decreasing = T),]#按cook距离降序排列 显示西藏地区数据对应的cook统计量明显过大,不能放入建…
零相关是什么? 零相关亦称“不相关”.相关的一种.两个变量的相关系数r=0时的相关.零相关表示两个变量非线性相关,这时两个变量可能相互独立,也可能曲线相关.对于正态变量,两个变量零相关与两个变量相互独立等价.对于一般情形,两个变量相互独立时一定零相关. [1] 零相关即没有关系,变量x和y之间的关系十分散乱,无法找出它们之间的联系,各现象间表现为相互独立.这种关系称为零相关. 相关系数如何得到? 本来使用一个变量中两个变量值差值的乘积,但是变量之间不能比较,所以将其标准化之后得到的相关系数. 用…
rm(list = ls()) #数据处理 library(openxlsx) library(car) library(lmtest) data = read.xlsx("xiti4.xlsx",sheet = 1) data attach(data) fm1 = lm(y~x1+x2+x3+x4+x5+x6+x7) #多元回归模型 coef(fm1) #残差图:残差分析 ei = resid(fm1) X = cbind(1,as.matrix(data[,2:8])) t = t…