TensorFlow 多 GPU 处理并行数据】的更多相关文章

Multi-GPU processing with data parallelism If you write your software in a language like C++ for a single cpu core, making it run on multiple GPUs in parallel would require rewriting the software from scratch. But this is not the case with TensorFlow…
Setup Tensorflow with GPU on OSX 10.11 环境描述 电脑:MacBook Pro 15.6 CPU: 2.7GHz 显卡: GT 650m 系统:OSX 10.11 Python版本:2.7 Using Anaconda and pip to install tensorflow 安装Tensorflow依赖项 安装brew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Hom…
一.安装cuda 具体安装过程见我的另一篇博客,ubuntu16.04下安装配置深度学习环境 二.安装tensorflow 1.具体安装过程官网其实写的比较详细,总结一下的话可以分为两种:安装release版本和源码编译安装.因为源码编译安装比较繁琐,且需要安装谷歌自己的编译器bazel,所以我选择安装编译好的. 2.我写这篇博客的时候tensorflow更新到了1.4.0,安装编译好的一定看版本,因为每个版本依赖的底层库是不一样的. 1.4.0版本安装之前需要安装CUDA-8,cuDNN v6…
1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. import tensorflow as tf with tf.device('/cpu:0'): a = tf.constant ([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant ([1.0, 2.0, 3.0], shape=[3], nam…
本文转载自:https://blog.csdn.net/qq_30520759/article/details/78947034 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_30520759/article/details/78947034 本文主要是通过tensorflow官网的教程来实现安装,如果无法安装的话也可以试着用源码去安装(源码安装相对比较复杂不推荐). 1.前期的环境查询准备 1.1查看tensorflow的对于系统的基本…
本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文http://mp.blog.csdn.net/postedit/79307696 此博文是在上文安装CUDA/cuDNN的基础上的个人填坑总结,欢迎指教. CUDA CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA™是…
Google TensorFlow for GPU安装.配置大坑 从本周一开始(12.05),共4天半的时间,终于折腾好Google TensorFlow for GPU版本,其间跳坑无数,摔得遍体鳞伤,曾一度怀疑自己廉颇老矣,不能饭也:后,凭借自己多年积累得还算扎实的基本功,终于从无数个坑中爬出,百转千回,成功安装了TensorFLow,如下图: 题外话,图中a+b的输出结果为42是有意为之,因为<银河系漫游指南>中关于生命.宇宙及一切问题的终极答案就是42 先小小庆祝一下,然后再把其中几个…
Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从图象的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统.从去年十一月开源至今一年多一点的时间里,该项目已经收获了40000+的star和18000+的fork,…
[开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误.以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务. 首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GP…
1.准备工作 1.1 确保GPU驱动已经安装 lspci | grep -i nvidia 通过此命令可以查看GPU信息,测试机已经安装GPU驱动…
不多说,直接上干货! You must choose one of the following types of TensorFlow to install: TensorFlow with CPU support only. If your system does not have a NVIDIA® GPU, you must install this version. Note that this version of TensorFlow is typically much easier…
Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从图象的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统.从去年十一月开源至今一年多一点的时间里,该项目已经收获了40000+的star和18000+的fork,…
1.下载python3.5.2版本并安装(必须是3.5版本,而且3.5后不带字母的版本) 2.使用下面的地址下载tensorflow的GPU版本 http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 3.以及tensorflow的依赖protubuf,还有其它比如numpy,scipy等,cuda是cuda8.0的44版本 4.安装cuda8.0,如果有报警信息也是可以装的(如截图) 安装完后看环境变量里有以下两项就表明cuda安装成功! 5.下载与c…
re 1. TensorFlow查看GPU信息; end…
Windows 10 Tensorflow 2 gpu正式版安装和更新日志 Tensorflow 2.0.0 released on2019年10月1日星期二 Link: https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0 本日志是win 10下tf2.0.0正式版的重新安装/更新的精确技术文档. Steps as follows: Step 1: enter into tf installing folder C:\Prog…
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c…
本博客主要用于在Ubuntu14.04 64bit 操作系统上搭建google开源的深度学习框架tensorflow. 0.安装CUDA和cuDNN 如果要安装GPU版本的tensorflow,就必须先安装CUDA和cuDNN,请参考Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本). 1.安装tensorflow github上下载已经编译好的.whl文件. 输入如下, sudo pip install tensorflow-0.8.0-cp27-non…
默认开启Tensorflow的session之后,就会占用几乎所有的显存,进行如下设置即可: 指定GPU编号: import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" 或者在脚本或者命令行中指定 export CUDA_VISIBLE_DEVICES=1 指定GPU使用的是按需分配的: config = tf.ConfigProto() config.gpu_options.allow_growth=True sess …
前言: TensorFlow 有cpu和 gpu两个版本:gpu版本需要英伟达CUDA 和 cuDNN 的支持,cpu版本不需要:本文主要安装gpu版本. 1.环境 gpu:确认你的显卡支持 CUDA,这里确认. vs2015运行时库:下载64位的,这里下载,下载后安装. python 3.6/3.5:下载64位的,这里下载,下载后安装. pip 9.0.1(确认pip版本 >= 8.1,用pip -V 查看当前 pip 版本,用python -m pip install -U pip升级pip…
编译gpu版本:bazel build -c opt --config=cuda --spawn_strategy=standalone //tensorflow_serving/model_servers:tensorflow_model_server 编译cpu版本:bazel build //tensorflow_serving/model_servers:tensorflow_model_server 问题1: ERROR: no such target '@org_tensorflow…
目录 Tensorflow-GPU 环境条件 现有硬件 现有软件 硬件要求 软件要求 步骤 0.Visual studio 1.下载安装显卡驱动 2.下载对应版本 CUDA 3.安装配置 cuDNN 4.安装 TensorFlow GPU 支持版本 Tensorflow-GPU > TensorFlow 包版本:tensorflow-gpu 1.13.1 环境条件 现有硬件 电脑:华硕笔记本,FX50J 显卡:NVIDIA GeForce GTX 950M 现有软件 Windows 10家庭中文…
摘自:https://blog.csdn.net/byron123456sfsfsfa/article/details/79811286 1.  在使用GPU版的TensorFlow跑程序的时候,如果不特殊写代码注明,程序默认是占用所有主机上的GPU,但计算过程中只会用其中一块.也就是你看着所有GPU都被占用了,以为是在GPU并行计算,但实际上只有其中一块在运行:另外的所有显卡都闲着,但其显存都被占用了,所以别人也用不了.不过这种情况通过在程序之前加三行代码就可以解决: import os os…
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速 0. 环境 OS:Windows 10,64 bit: 显卡:NVIDIA GeForce GTX 1050Ti,显卡查看方法:计算机[设备管理器]⇒ [显示适配器] Python 的版本,注意只能为 3.5,并非越高越好: CUDA,8.0: keras 可以以 TensorFlow 为后端(backend)(也可以 theano 为后端),安装完成 TensorFlow 的基础上…
在使用GPU版的TensorFlow跑程序的时候,如果不特殊写代码注明,程序默认是占用所有主机上的GPU,但计算过程中只会用其中一块.也就是你看着所有GPU都被占用了,以为是在GPU并行计算,但实际上只有其中一块在运行:另外的所有显卡都闲着,但其显存都被占用了,所以别人也用不了.不过这种情况通过在程序之前加三行代码就可以解决: import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ['C…
问题描述: Tensorflow 训练时运行越来越慢,重启后又变好. 用的是Tensorflow-GPU 1.2版本,在GPU上跑,大概就是才开始训练的时候每个batch的时间很低,然后随着训练的推进,每个batch的耗时越来越长,但是当我重启后,又一切正常了? 问题查找: 一开始查到的原因是batch_size 和 batch_num的问题,通过python yield 数据生成器解决,确保内存每次处理的数据确定是batch_size大小,但是发现运行效率还是不高,所以查阅google的一些资…
Tensorflow可在训练时制定占用那几个gpu,但如果想真正的使用多gpu训练,则需要手动去实现. 不知道tf2会不会改善一下. 具体参考:https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/6.2_multigpu_cnn.html https://jhui.github.io/2017/03/07/TensorFlow-GPU/ https://zhuanlan.zhihu.com/p/75195049…
''' Created on May 25, 2017 @author: p0079482 ''' # 分布式深度学习模型训练模式 # 在一台机器的多个GPU上并行训练深度学习模型 from datetime import datetime import os import time import tensorflow as tf import mnist_inference # 定义训练神经网络时需要用到的配置. BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.…
GPU版的tensorflow在模型训练时遇到Blas GEMM launch failed错误,或者keras遇到相同错误(keras 一般将tensorflow作为backend,如果安装了GPU版本的tensorflow,那么在使用keras时会优先使用GPU),类似报错如下: InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(300, 1), b.shape=(1, 10), m=300…
系统配置 系统版本: Centos7.6 语言: Python3.5(anaconda3 4.2) 框架: Tensorflow 安装依赖 sudo yum install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev curl 安装…
使用tensorflow,如果不加设置,即使是很小的模型也会占用整块GPU,造成资源浪费. 所以我们需要设置,使程序按需使用GPU. 具体设置方法: gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_optio…