Generative Adversarial Nets[Theory&MSE]】的更多相关文章

本文来自<deep multi-scale video prediction beyond mean square error>,时间线为2015年11月,LeCun等人的作品. 从一个视频序列中预测未来的图像帧涉及到构建一个内部表征,该表征能够对准确对图片帧演化(如图像内容和动态)进行建模.这就是为什么像素空间的视频预测主要是通过无监督特征学习来完成.虽然光流在CV领域已经研究的很成熟了,却很少用在未来图像帧预测中.许多视觉应用可以通过视频的下一帧来获取信息,且不需要对每个像素轨迹进行追踪.…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa…
本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出一个新的均衡执行方法,该方法与从Wasserstein距离导出的loss相结合,用于训练基于自动编码器的GAN.该方法在训练中会平衡生成器和判别器.另外,它提供一个新的近似收敛测度,快而且稳定,且结果质量高.同时作者提出一种控制图像多样性和可视化质量之间权衡的方法.作者专注于图像生成任务,即使在更高分辨率下也…
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Conditional GAN 图2.1 CGAN的目标函数 图2.2 CGAN的判别器和生成器的结构图及loss 图2.2来自这里,图2.3是来自论文内部,两者在原理结构上没任何差别. 图2.3 CGAN结构图 如图2.3所示,CGAN相比于GAN在于,其输入部分增加了额外的信息,且此额外信息是固定的,如图像类别或…
Conditional Generative Adversarial Nets arXiv 2014   本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加"激烈"的对抗,从而达到更好的结果. 众所周知,GANs 是一个 minmax 的过程: 而本文通过引入 条件 y,从而将优化的目标函数变成了: 下图给出了条件产生式对抗网络的结构示意图: 是的,整个过程就是看起来的这么简单,粗暴,有效. 实验部分,作者在 Mnist 数据集上进行了实验: 然后是,给图像…
Generative Adversarial Nets NIPS 2014  摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分布:还有一个判别式模型 D 可以预测来自训练样本 而不是 G 的样本的概率.训练 G 的目的是让 D 尽可能的犯错误,让其无法判断一个图像是产生的,还是来自训练样本.这个框架对应了一个 minimax two-player game. 也就是,一方得势,必然对应另一方失势,不存在两方共赢的局面,这个…
本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017年3月.本文算是GAN的一个很大的应用里程点,其可以用在风格迁移,目标形变,季节变换,相片增强等等. 1 引言 如图1所示,本文提出的方法可以进行图像风格的变化,色调的变化等等.该问题可以看成是image-to-image变换,将给定场景下的一张图片表示\(x\)变换到另一个图片\(y\),例如:灰度图片到颜…
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如何通过当前图片生成你不同年龄时候的样子. 假设给你一张人脸(没有告诉你多少岁)和一堆网上爬取的人脸图像(包含不同年龄的标注人脸但不一定配对),你能给出那一张人脸80岁或者5岁时候的样子么.当然回答不能,当前现有的人脸年龄研究都试图学习一个年龄组间的变换,因此需要配对的样本和标注的询问图片.在本文中,作者从一个…
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是半监督学习.当我们说学习概率分布,典型的思维是学习一个概率密度.这通常是通过定义一个概率密度的参数化族\((P_{\theta})_{\theta\in R^d}\),然后基于样本最大似然:如果当前有真实样本\(\{x^{(i)}\}_{i=1}^m\),那么是问题转换成: \[\underset{\thet…
本文来自<towards principled methods for training generative adversarial networks>,时间线为2017年1月,第一作者为WGAN的作者,Martin Arjovsky. 下面引用自令人拍案叫绝的Wasserstein GAN 要知道自从2014年Ian Goodfellow提出以来,GAN就存在着训练困难.生成器和判别器的loss无法指示训练进程.生成样本缺乏多样性等问题.从那时起,很多论文都在尝试解决,但是效果不尽人意,比…