最近在捡回之前的线性代数知识,在复习可逆矩阵的时候,发现有的书上把可逆矩阵又称为非奇异矩阵,乍一看名字完全不知所云,仔细一分析,还是不明白.要想弄明白,还是得从英文入手,下面的解释主要从这里得来的Why are invertible matrices called 'non-singular'?. 先把原回答搬过来: If you take an n×n matrix "at random" (you have to make this very precise, but it can…
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link:  Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
本文记录阅读该论文的笔记. 本文基于阈值加法同态加密方案提出了一个新的允许\(N\)方检查其输入集的交集是否大于\(n-t\)的IPSI方案,该协议的通信复杂度为\(O(Nt^2)\). 注意:\(N\)指的是多少个参与方.\(n\)是输入集的大小.\(t\)是预先设定的阈值,也是阈值. 该方案基于The Communication Complexity of Threshold Private Set Intersection-2019:解读进行的改进. 该协议可以用于各方知道交集很大,但不知…
奇异值: 奇异值分解法是线性代数中一种重要的矩阵分解法,在信号处理.统计学等领域有重要应用. 定义:设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值.记为σi(A).如果把A‘*A的特征值记为λi(A‘*A),则σi(A)=sqrt(λi(A’*A)). 奇异矩阵:    奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵. 奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵.若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵).然…
We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular value decomposition, is one that should be a part of the standard mathematics undergraduate curriculum but all too often slips between the cracks. Beside…
原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the singular value decomposition, is one that should be a part of the standard mathematics undergraduate curriculum but all too often slips between the c…
链接网址:Math concepts / 数学概念 – https://www.codelast.com/math-concepts-%e6%95%b0%e5%ad%a6%e6%a6%82%e5%bf%b5/ 这里记录了我在学习过程中遇到或总结的一些基础数学概念,保存于此,与需要者共享. Following are some basic math concepts I read or summarized in my learning process, I wrote them down her…
最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M算法和分段法的仿真,拿出来与大家分享一下.单纯形方法是求解线性规划问题的一种基本方法. 线性规划就是在一系列不等式约束下求目标函数最大值或最小值的问题,要把数学中的线性规划问题用计算机来解决,首先要确定一个标准形式. 将所给的线性规划问题化为标准形式: s.t.是英文subject to 的简写,意思是受约束,也就是说第一个方程受到后面两个方程的约束.对于求最大值问题可以将目标函数加负号转换为最小值问题.…
Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) a, b = np.linalg.eig(A) print('打印特征值a:\n{}'.format(a)) print('打印特征向量b:\n{}'.format(b)) 打印A: [[ 3 -1] [-1 3]] 打印特征值a: [4. 2.] 打印特征向量b: [[ 0.70710678 0.…
在 YouTube 上找到了慕尼黑工业大学(Technische Universitaet München)计算机视觉组 Daniel Cremers 教授的 Multiple View Geometry 课程.容易理解,收获颇多,写下笔记以巩固所学. 课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课程所使用课件与练习题的下载地址. 课程第1章介…
In the field of numerical analysis, the condition number of a function with respect to an argument measures how much the output value of the function can change for a small change in the input argument. This is used to measure how sensitive a functio…
参考文献:PRML2 参数方法和非参数方法 机器学习上的方法分为参数方法(根据先验知识假定模型服从某种分布,然后利用训练集估计出模型参数,也就弄清楚了整个模型,例如感知器)和非参数方法(基于记忆训练集,然后根据训练集预测,例如kNN). 参数方法 参数方法根据先验知识假定模型服从某种分布,然后利用训练集估计出模型参数,也就弄清楚了整个模型. 那么,估计模型参数到底是一个客观存在的参数还是一个概率密度分布,这个分歧就引出了贝叶斯学派和非贝叶斯学派的不同之处. 非贝叶斯学派: 非贝叶斯学派认为先验知…
可以用来求解协方差矩阵的特征值和特征向量. 雅可比方法(Jacobian method)求全积分的一种方法,把拉格朗阶查皮特方法推广到求n个自变量一阶非线性方程的全积分的方法称为雅可比方法. 雅克比迭代法的计算公式简单,每迭代一次只需计算一次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,比较容易并行计算. 考虑线性方程组Ax=b时,一般当A为低阶稠密矩阵时,用主元消去法解此方程组是有效方法.但是,对于由工程技术中产生的大型稀疏矩阵方程组(A的阶数很高,但零元素较多,例如求某些偏微分方程数值解…
https://blog.csdn.net/popy007/article/list/2?t=1&  //向量计算相关文章 https://www.baidu.com/link?url=48CwL-j6E_WG3nUxbBFVL9ejTlj8g-KfykMcBecP27EyuZ5YhLVktT5lT3MJ1ZTR48BdbODaCBKS2GMHSsI55T4YKwRz1_r-5MDQTWjDIaa&wd=&eqid=a068703d00428e9b000000065d0591f8 …
目录 1. 向量 & 矩阵 1.1. 问: np.ndarray 与 np.matrix 的区别 1.2. 向量空间 2. 算术运算 2.1. 为什么线性代数定义的乘积运算不按照加法的规则(按位相乘)进行? 2.2. 数组广播(broadcasting) 3. 矩阵乘积 3.1. 矩阵与向量的乘积 3.1.1. 除了坐标转换,矩阵乘积还有什么用? 3.1.2. 矩阵 * 矩阵 3.1.3. 一些特例 4. 点积乘法 5. 特殊矩阵 5.1. 转置矩阵 5.1.1. 共轭转置 6. 用矩阵表示各种…
行列式 n阶行列式的计算: \[\left|\begin{matrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\end{matrix}\right|=\sum(-1)^{…
前言: FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA).FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度.理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k). 本篇博文先从解决优化问题的传统方法“梯度下降”开始,然后引入ISTA,最后再上升为FISTA.文章主要参考资料如下: [1] A Fas…
http://blog.163.com/bzm_square/blog/static/9355546320129582254842/ PS: 一种有关于矩阵的思维方法.....WiKi 向量空间,不定点定理,仿射变换等数学术语请参考 Ron Goldman 计算机图形学与几何造型导论 From http://blog.csdn.net/myan/article/details/647511        线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国…
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter (补充: Chuong Do) 时间:2016年6月 翻译:@MOLLY(mollyecla@gmail.com) @OWEN(owenj1989@126.com) 校正:@寒小阳(hanxiaoyang.ml@gmail.com) @龙心尘(johnnygong.ml@gmail.com)  出处:…
线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用.大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免…
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. 所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 1.线性方程组 1)构造增广矩阵,即系数矩阵A增加上常数向量b(A|b) 2)通过以交换行.某行乘以非负常数和两行相加这三种初等变化将原系统转化为更简单的三角形式(triangular form) 注:这里的初等变化可以通过…
最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对这部分知识进行总结,另一方面也希望能够对其他人有所帮助.由于内容比较多希望能够坚持写完. 本篇博客主要讲解线性最小二乘问题,主要包括以下内容: 最小二乘问题的定义 正规方程求解 乔姆斯基分解法求解 QR分解法求解 奇异值分解法求解 齐次方程的最小二乘 一. 问题的定义 最小二乘问题通常可以表述为,通…
数组的累加(拼接) 在前面讲了使用切片方法能够对数组进行切分,使用copy对切片的数组进行复制,那么数组该如何拼接呢? a1 = np.full((2,3),1)#填充数组 a2 = np.full((3,3),2) a3 = np.full((2,3),3) >>a3 array([[ 3., 3., 3.], [ 3., 3., 3.]]) vstack 竖直方向拼接数组 a4 = np.vstack((a1,a2,a3)) #a1,a2,a3必须有相同的列数 >> a4 [[…
在之前的博文OpenCV,计算两幅图像的单应矩阵,介绍调用OpenCV中的函数,通过4对对应的点的坐标计算两个图像之间单应矩阵\(H\),然后调用射影变换函数,将一幅图像变换到另一幅图像的视角中.当时只是知道通过单应矩阵,能够将图像1中的像素坐标\((u_1,v_1)\)变换到图像2中对应的位置上\((u_2,v_2)\),而没有深究其中的变换关系. 单应(Homography)是射影几何中的概念,又称为射影变换.它把一个射影平面上的点(三维齐次矢量)映射到另一个射影平面上,并且把直线映射为直线…
阅读<计算机视觉中的多视图集合> 2D射影几何和变换 2D射影平面 本章的关键是理解线和点的对偶性.从射影平面模型出发,IP^2^内的点(a, b ,c)由IP^3^空间中一条过原点的射线k(x1, x2, x3)^T^表示.点采用的是齐次坐标表示,具有相同比例,不同缩放因子的表示都是同一个点,就像射线也可以用同比例,不同缩放因子的向量表示一样. 射影变换projectivity 射影映射,也叫保线变换,或者射影变换,或者单应(homography),都是同义词,其性质是保线性,即直线变换之后…
本渣想回过头来整理一下MATLAB的一些基本的知识(很多东西比较琐碎,应该系统的梳理梳理),下文中没有提到的,自己用help查即可. 此文用来存个档,便于回顾. 由于matlab各版本部分语法存在差异,可能会出现bug,用help查帮助文档即可. 如果没有装Matlab,我这里有一篇建模软件的博客:https://www.cnblogs.com/fangxiaoqi/p/10563509.html 变量名:字母数字串(第一个字符必须英文字母 | 字符间无空格 | 最多19个字符): 用%注解:…
特征值选择技术要点 特征值选择技术要点(特征值分解) 作者:王立敏 文章来源:xiahouzuoxin 一.特征值分解 1.特征值分解 线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法.需要注意只有对可对角化矩阵才可以施以特征分解. 设A有n个特征值及特征向量,则: 将上面的写到一起成矩阵形式: 若(x1,x2,...,xn)可逆,则左右两边都求逆,则方阵A可直接通过特征…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同时,介绍了不同的error measure方法.本节课介绍机器学习最常见的一种算法:Linear Regression. 一.线性回归问题 在之前的Linear Classification课程中,讲了信用卡发放的例子,利用机器学习来决定是否给用户发放信用卡.本节课仍然引入信用卡的例子,来解决给用户发放信用卡…
Matlab提供了两种除法运算:左除(\)和右除(/).一般情况下,x=a\b是方程a*x =b的解,而x=b/a是方程x*a=b的解.例:a=[1  2  3; 4  2  6; 7  4  9]b=[4; 1; 2];x=a\b则显示:x=          -1.5000           2.0000           0.5000如果a为非奇异矩阵,则a\b和b/a可通过a的逆矩阵与b阵得到:       a\b = inv(a)*b       b/a = b*inv(a)…
对于方阵A,如果为非奇异方阵,则存在逆矩阵inv(A)对于奇异矩阵或者非方阵,并不存在逆矩阵,但可以使用pinv(A)求其伪逆   inv:   inv(A)*B实际上可以写成A\BB*inv(A)实际上可以写成B/A这样比求逆之后带入精度要高 A\B=pinv(A)*B A/B=A*pinv(B)   pinv:   X=pinv(A),X=pinv(A,tol),其中tol为误差 pinv是求广义逆 先搞清楚什么是伪逆.对于方阵A,若有方阵B,使得:A·B=B·A=I,则称B为A的逆矩阵.如…