Logistic回归模型和Python实现】的更多相关文章

回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被…
目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468.html 返回目录 Logistic回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1 # -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext…
目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(sklearn库) 一元线性回归.多元线性回归.逻辑斯谛回归.广义线性回归.非线性回归的关系 通过上图(插图摘自周志华<机器学习>及互联网)可以看出: 线性模型虽简单,却拥有着丰富的变化.例如对于样例,当我们希望线性模型的预测值逼近真实标记y时,就得到了线性回归模型:.当令模型逼近y的衍生物,比如时,就…
Logistic回归 算法优缺点: 1.计算代价不高,易于理解和实现2.容易欠拟合,分类精度可能不高3.适用数据类型:数值型和标称型 算法思想: 其实就我的理解来说,logistic回归实际上就是加了个sigmoid函数的线性回归,这个sigmoid函数的好处就在于,将结果归到了0到1这个区间里面了,并且sigmoid(0)=0.5,也就是说里面的线性部分的结果大于零小于零就可以直接计算到了.这里的求解方式是梯度上升法,具体我就不扯了,最推荐的资料还是Ng的视频,那里面的梯度下降就是啦,只不过一…
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类.Logistic回归的一般过程(1)收集数据:采用任意方法收集数据(2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳(3)分析数据:采用任意方法对数据进行分析(4)训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数(5)测试算法:一旦训练步骤完…
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑…
2017-08-12 Logistic 回归,作为分类器: 分别用了梯度上升,牛顿法来最优化损失函数: # -*- coding: utf-8 -*- ''' function: 实现Logistic回归,拟合直线,对数据进行分类: 利用梯度上升,随机梯度上升,改进的随机梯度上升,牛顿法分别对损失函数优化: 这里没有给出最后测试分类的函数: date: 2017.8.12 ''' from numpy import * #从文件加载处理数据 def loadDataSet(): dataMat…
,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测病马的生死. 准备数据:处理被据中的缺失值 因为有时候数据相当昂贵,扔掉和重新获取 都是不可取的,所以必须采用一些方法来解决这个问题. 下面给出了一些可选的做法: 这里选择实数0来替换所有缺失值,恰好能适用于Logistic回归.这样做的直觉在 于 ,我们需要的是一个在更新时不会影响系数的值.回归系…
假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类.这里的 “ 回归” 一词源于最佳拟合,表示要找到最佳拟合参数集. 训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法. 基于Logistic回归和Sigmoid函数的分类 import sys from pylab import * t = arange(-60.0, 60.3, 0.1)…
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. LR 正则化 3.1 L1 正则化 3.2 L2 正则化 3.3 L1正则化和L2正则化的区别 4. RL 损失函数求解 4.1 基于对数似然损失函数 4.2 基于极大似然估计 二. 梯度下降法 1. 梯度 2. 梯度下降的直观解释 3. 梯度下降的详细算法 3.1 梯度下降法的代数方式描述 3.2…