ML之回归】的更多相关文章

import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.linalg.Vectors import org.apache.spark.sql.SparkSession /** * 逻辑回归 * Created by zhen on 2018/11/20. */ object LogisticRegr…
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行分类出现了错误:而且线性回归计算的结果往往会远小于0或者远大于1,这对于0,1分类变得很奇怪.可见线性回归并不适用与分类.下面介绍的逻辑回归的结果总是在[0,1],适用于分类,其实逻辑回归是一种分类算法. 2 假设函数Hypothesis Representation 逻辑回归假设函数为: 其中 是…
一.概述 一元形式: 多元形式: 最小二乘的目标函数…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn eShopDashboardML - 销售预测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 ASP.NET Core Web应用程序和控制台应用…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 出租车费预测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .csv 文件 价格预测 回归 Sdca 回归 在这个介绍性示例中,您…
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. 相对于RDD, DataFrame拥有更丰富的操作API, 可以进行更灵活的操作. 目前, spark.mllib已经进入维护状态, 不再添加新特性. 本文将重点介绍pyspark.ml, 测试环境为Spark 2.1, Python API. 首先介绍pyspark.ml中的几个基类: ML Da…
机器学习相关的文章太多,选取一篇本人认为最赞的,copy文章中部分经典供自己学习,摘抄至 http://www.cnblogs.com/subconscious/p/4107357.html#first  示例入门 传统上如果我们想让计算机工作,我们给它一串指令,然后它遵照这个指令一步步执行下去.有因有果,非常明确.但这样的方式在机器学习中行不通.机器学习根本不接受你输入的指令,相反,它接受你输入的数据! 也就是说,机器学习是一种让计算机利用数据而不是指令来进行各种工作的方法.这听起来非常不可思…
目录 基本形式 代价函数 用梯度下降法求\(\vec\theta\) 扩展 基本形式 逻辑回归是最常用的分类模型,在线性回归基础之上扩展而来,是一种广义线性回归.下面举例说明什么是逻辑回归:假设我们有样本如下(是我编程生成的数据): 我们要做的是找到一个决策边界,把两类样本给分开,当有新数据进来时,就判断它在决策边界的哪一边.设边界线为线性函数 \[h_\theta(\vec x) = \theta_0 + \theta_1x_1 + \theta_2x_2 \tag {1}\]取0时的直线,如…
理解问题 出租车的车费不仅与距离有关,还涉及乘客数量,是否使用信用卡等因素(这是的出租车是指纽约市的).所以并不是一个简单的一元方程问题. 准备数据 建立一控制台应用程序工程,新建Data文件夹,在其目录下添加taxi-fare-train.csv与taxi-fare-test.csv文件,不要忘了把它们的Copy to Output Directory属性改为Copy if newer.之后,添加Microsoft.ML类库包. 加载数据 新建MLContext对象,及创建TextLoader…
Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,“逻辑”是Logistic的音译,和真正的逻辑没有任何关系. 模型 线性模型 由于逻辑回归是一种分类方法,所以我们仍然以最简的二分类为例.与感知机不同,对于逻辑回归的分类结果,y ∈ {0, 1},我们需要找到最佳的hθ(x)拟合数据. 这里容易联想到线性回归.线性回归也可以用于分类,但是很多时候,尤其是二分类的时候,线性回归并不能很好地工作,因为分类不是连续的函数,其结果只能是固定的离散值.设想一下有线性回…