1.  寻找数据集の奥义 根据CMU的说法,寻找一个好用的数据集需要注意一下几点: 数据集不混乱,否则要花费大量时间来清理数据. 数据集不应包含太多行或列,否则会难以使用. 数据越干净越好,清理大型数据集可能非常耗时. 应该预设一个有趣的问题,而这个问题又可以用数据来回答. 2.  去哪里找数据集 Kaggle:爱竞赛的盆友们应该很熟悉了,Kaggle上有各种有趣的数据集,拉面评级.篮球数据.甚至西雅图的宠物许可证.https://www.kaggle.com/ UCI机器学习库:最古老的数据集…
作者:IT程序狮链接:https://zhuanlan.zhihu.com/p/24598210来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 回顾今年已发布的 JS 框架和库,我们针对地筛选了一些能够提供直接和具体功能的免费 JavaScript 插件和库,与大家分享.它们可不是臃肿的一站式框架,而是一些轻量级,并能够帮助你更快.更容易地进行网页设计与开发的实用型框架. 正如你期望的,文中的一些插件可用来创建滑块.图片库.响应式菜单.弹出式窗口以及许多其他常见的…
超过 150 个最佳机器学习,NLP 和 Python教程 微信号 & QQ:862251340微信公众号:coderpai简书地址:http://www.jianshu.com/p/2be3... 我把这篇文章分为四个部分:机器学习,NLP,Python 和 数学.我在每一部分都会包含一些关键主题,但是网上资料太广泛了,所以我不可能包括每一个可能的主题. 如果你发现好的教程,请告诉我.在这篇文章中,我把每个主题的教程数量都是控制在五到六个,这些精选出来的教程都是非常重要的.每一个链接都会链接到…
在有监督(supervise)的机器学习中,数据集常被分成2~3个即: 训练集(train set) 验证集(validation set) 测试集(test set) 一般需要将样本分成独立的三部分训练集(train set),验证集(validation set)和测试集(test set).其中训练集用来估计模型,验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何.一个典型的划分是训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取…
这50个CSS网站是由WebDesignerWall评选出来的,很具参考价值.我们在欣赏的同时,也能从中吸取很多灵感,也能从它们的源代码中学习更高级的CSS技术.今年,越来越多的设计师开始使用超大的背景图片技术和一些JavaScript框架(如jQuery及MooTools)来提高用户体验.还有一些设计师将Flash和CSS混合使用. 您还可以参考以下CSS相关资源: <精选15个国外CSS框架><推荐20个让你学习并精通CSS的网站><20+漂亮的网站分类存档设计赏析(下)…
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…
sklearn数据集 (一)机器学习的一般数据集会划分为两个部分 训练数据:用于训练,构建模型. 测试数据:在模型检验时使用,用于评估模型是否有效. 划分数据的API:sklearn.model_selection.train_test_split 示例代码如下: from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 使用加载器读取数据并存入变量iris iris…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
介绍 想象一下-你已经在给定的数据集上训练了机器学习模型,并准备好将它交付给客户.但是,你如何确定该模型能够提供最佳结果?是否有指标或技术可以帮助你快速评估数据集上的模型? 当然是有的,简而言之,机器学习中损失函数可以解决以上问题. 损失函数是我们喜欢使用的机器学习算法的核心.但大多数初学者和爱好者不清楚如何以及在何处使用它们. 它们并不难理解,反而可以增强你对机器学习算法的理解.那么,什么是损失函数,你如何理解它们的意义? 在本文中,我将讨论机器学习中使用的7种常见损失函数,并解释每种函数的使…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 目录: 数据预处理 归一化 标准化 离散化 二值化 哑编码 特征工程 特征提取 特征选择 模型评估方法 留出法 交叉验证法 自助法 模型性能度量 正确率(accuracy)和错误率(error rate) 查准率(precision).查全率(recall)与 参考文献 一.数据预处理 数据预处理的方式较多,针对不同类型的数据,预处理的方式和内容也不尽相同,这里…