由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0. 暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数.注意到总石子数量不超过1e7,按ai从小到大排序,这样k的枚举范围就不会超过2ai,于是复杂度O(md). 注意空间卡的非常紧,连滚动都开不下,改为留下的有j堆(模意义下)可能比较方便,存一下j=d-1时的数组,对j=1~d-1倒序转移完后再特判j=0即可. #include<iostream> #include<cstdio>…
4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 733  Solved: 281[Submit][Status][Discuss] Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁就输了.在游戏开始前,B可以扔掉若干堆石子,但是必须保…
将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O(md)$. 对于空间的问题,注意到$f[i][j][k]$和$f[i][j][k\ xor\ a[i]]$的转移是互补的,于是可以同时处理,省去滚动数组,直接做到原地DP,当然$f[i][0][k]$要特别处理. 最后注意特判$n$是$d$的倍数的情况,此时答案应该减去$1$. #include<c…
题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j,xor值为k的方案数 那么这样我们会发现如果第一个就非常大有点爆炸 sigma(2* max(a[1]...a[i]))的值 那么很自然的想到将它排序 那么就是sigma(a[i])的 特判一下全部取完就可以了 代码:…
容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位考虑,设f[i][j]为已确定奇数石子堆的第i位及以上的放法后,保证当前异或和为0,剩下j个石子时的方案数.转移套一些组合数即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib…
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game called Xoinc for them. Initially a stack of N (5 <= N <= 2,000) coins sits on the ground; coin i from the top has integer value C_i (1 <= C_i <=…
Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁就输了.在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子.A先手,请问B有多少种扔的方式,使得B能够获胜. Input 第一行包含两个正整数n,d(1<=n<=500000,1<=d<=10). 第二行包含n个正整数a[1],a[2],...,a…
题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k]$表示到第$i$个为止取出来的石子数目模$d$等于$j$且剩下的石子异或和为$k$的方案数,然后就枚举转移啊=.= 发现时空复杂度好像都不能承受,不过可以尝试分析/优化一下.首先分析一波后发现时间复杂度其实是对的......只是我们需要将石子数从小到大排个序,这样一路异或下来异或到$i$时最大值不超…
原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a_i\) 为"奇数位上的数":\(i\) 为偶数时, \(a_i\) 为"偶数位上的数".定义左.右两端的数分别表示 \(a_1\) 和 \(a_n\). 考虑第一步: 首先,如果 A 取了左右某一个端点,那么他必然能取走和他取的点奇偶性相同的所有点. 然后,我们考虑…
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem 10983 18765 Y 1036 [ZJOI2008]树的统计Count 5293 13132 Y 1588 [HNOI2002]营业额统计 5056 13607 1001 [BeiJing2006]狼抓兔子 4526 18386 Y 2002 [Hnoi2010]Bounce 弹飞绵羊 43…