题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\] 即 \[N!\prod(p_i - 1)(\prod p_i)^{-1}\] 预处理一下,都是线性复杂度. 注意: N=1的情况 long long 所以,数论题一定要注意各种特殊情况和longlong 代码 #include <bits/stdc++.h> #define ll long l…
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆元 p[i]-1 处理一下前缀积inv[x]= 然后答案就是N!*inv[x] /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #inc…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数…
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数据极限范围内所有的逆元崩出来就行了... ... 最后,附上丑陋的代码... ... #include <stdio.h> #define LL long long int prim[5000001],n,m,t,p,env[10000001],fac[10000001],f[10000001],…
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中所有质数.那么这个前缀积就可以预处理了. 当n.m大于p的时候是可能有问题的,数据里没有就懒得讨论了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include&…
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两个合起来比较明白…… 题意:求1~n!中与m!互质的数的数量(mod R). ∵由欧几里得算法得gcd(a,b)=gcd(b,a%b) ∴gcd(a+b,b)=gcd(b,(a+b)%b)=gcd(b,a) 即 gcd(a,b)=gcd(a+b,b) 推广:gcd(a,b)=gcd(a+k*b,b)…
传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) \times N!} {M!}$.欧拉函数并不是完全积性函数,所以$M!$的欧拉函数值并不能很容易的求出来.但是根据欧拉函数的式子,可以发现$\phi (M!)$的值其实也可以预处理出来,即$\phi(M!)=M! \prod\limits ^{P_i \in [2,M]} (1-\frac{1}…
题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们知道,若x与y互质,则x+y与y也互质,x+2y与y也互质... 换到这道题上来说,若一个数x与m!互质,那么x+(m!)也一定与m!互质,(x+m!*2)也一定与m!互质... 因为n!一定是m!的倍数,于是我们每存在到一个x<=m!与m!互质,我们就一定能找到(n!)/(m!)个与m!互质的数 而m…
[BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 \(gcd(x,y)=gcd(x+ky,y)\) 所以,相当于 每隔\(m!\),答案增长的值都是\(\varphi(m!)\) 所以 我们可以得出 \[ans=\frac{n!}{m!}\varphi(m!)\] 后面的\(\varphi\)可以直接拆开,枚举质因数 \[ans=\frac{n!}…
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数…
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一 大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可. R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行…
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\(\frac{n!}{m!}\)段,每一段和\(m!\)互质的数量都相同,那么显然就是\(\phi(m!)\) 所以答案是\(\frac{n!}{m!}\phi(m!)\) 然后怎么求呢,拆开 \(\frac{n!}{m!}\phi(m!)=\frac{n!}{m!}m!\Pi\frac{p-1}{…
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对…
P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\)互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对\(R\)取模后的答案即可.\(R\)是一个质数. 输入输出格式 输入格式: 第一行为两个整数\(T\),\(R\).\(R \le 10^9+10\)…
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模…
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的个数,答案要对r取模. 输入格式: 第一行为两个整数T,R.R<=10^9+~~10,T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数n,m,见题目描述 m<=n 输出格式: 共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值 输入输出样例 i…
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n Outp…
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. 输入 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n 输出 共T行,对于每一对N,…
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n Outp…
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n Outp…
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n Outp…
\(\color{#0066ff}{ 题目描述 }\) 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. \(\color{#0066ff}{输入格式}\) 第一行为两个整数T,R.R<=\(10^9+10\),T<=10000,表示该组中测试数…
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数.//codevs这里有坑,R是合数 输入输出格式 输入格式: 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数N,M,…
传送门! 题目在这里... 题目大意? 难道不是说的很清楚了么OvO 求n!中与m!互质的数的个数.. 题目分析. 显然的数论... 所以就是化式子呗.. 一个很显然的性质就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\)... 而题目中说了\(m\leqslant n\), ∴ \(m!|n!\) 于是我们只需要计算\(m!\)中与\(m!\)互质的数的个数,然后乘以\(\frac{n!}{m!}\)即可.. 我们发现上面加粗的这一坨就是\(\varphi(m!)\)…
问题:可能逆元不存在吗? 题解: Gcd(a,b)==Gcd(b,a-b); 从数据范围可以看出应该求M!的欧拉函数: 然后通过Gcd转化过去 一开始没想到 #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long Lint; const int maxT=20000; const int maxn=10000009; int T,r; int…
题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论    对于两个正整数和,如果是的倍数,那么中与互素的数的个数为      本结论是很好证明的,因为中与互素的个数为,又知道,所以 结论成立.那么对于本题,答案就是 事实上只要把素数的逆元用exgcd求一求就好,其余并未用到 逆元递推法: #include<stdio.h> #include<string.h> ; typedef long long ll; int pr[N],p[N],cnt,mod; i…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关键是m!~n!中的如何处理 首先要知道一个性质:gcd(a+b,b)=gcd(b,(a+b)%b)=gcd(b,a)=gcd(a,b) 即对于m!内所有与m!互质的数,只要给他们加上m!则也与m!互质且在(m!,n!]范围中,这样对于每个来说则有n!/m!个 所以ans=φ(m!)*(n!/m!)…