题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题意概述:给出一张N点的DAG(从1可以到达所有的点),点1的入度为0.现在加一条原图没有的边,问有多少种方案可使这张图变成一棵以1为根的有向树(即每个点的父亲指向自己). N<=100000,M<=min(200000,N(N-1)/2). 实际上这个题主要在分析(感觉终于开始自己做出省选题了). 先看没有加边的情况,yy一下你发现这种情况的答案就是所有rd(入度)不为0的点r…
DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). -------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   typedef lo…
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见 到你姐姐吧.」  恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑.  「那你仔细观察过枫叶吗?」  说罢,枫茜伸手,接住了一片飘落的枫叶.  「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说, 枫叶上有一些特殊的位置,就和人的穴位一样.脉络都是连接在这些穴位之间的.…
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题目很长,写得也很有诗意与浪漫色彩,让我们不禁感叹出题人是一个多么英俊潇洒的人. 所以题目大意就是: 给一个有向无环图,问加上一条我给定的边后,有多少个以1为根的树形图?n<=1e5,m<=2*1e5 原图无重边,加上的边可以为自环. 首先先来解决一个问题: 一个有向无环图的树形图有多少个呢? 相当于除了根节点以外,每个点随意取一个入度,为什么就一棵树呢?每个点选一个父亲,并且保…
4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加入一条边后,我们依然可以按照上面的公式求出一个值T,然后减去不合法的,即存在环的. 那么这个环就是X->Y这条边,和Y->X的一条路径,X->Y必选了,所以可以考虑求出Y->X的一条路径,然后这条路径和X->Y构成的环的答案是$\prod\limits_{u不是这条路径上的点}…
题目链接:http://blog.csdn.net/popoqqq/article/details/45194103 写代码的时候也没有很清晰....具体看这里吧 #include<iostream> #include<cstdio> #include<algorithm> #include<vector> #include<cstdlib> #include<cmath> #include<cstring> #inclu…
其实就是贴一下防止自己忘了,毕竟看了题解才做出来 Orz PoPoQQQ 原文链接 Description 背景太长了 给定一个DAG,和一对点(x, y), 在DAG中由x到y连一条有向边,求生成树的方案数. Input&Output Input 第一行四个整数,n,m,x,y. n个节点,m条边,从x到y连一条新边. 接下来m行,每行两个整数,描述有向边. Output 一行一个整数,即答案(mod 1e9 + 7) Solution…
题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 输入文件的第一行包含四个整数 n.m.x 和 y ,依次代表枫叶上的穴位数.脉络数,以及要添加的脉络是从穴位 x 连向穴位 y 的. 接下来 m 行,每行两个整数,由空格隔开,代表一条脉络.第 i 行的两个整数为 ui 和 vi ,代表第 i 条脉络是从穴位 ui 连向穴位 vi 的.  输出 输…
原题戳我 Solution: (部分复制Navi_Aswon博客) 解释博客中的两个小地方: \[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j∉S)}degree_j\] 因为加了\(x\)到\(y\)这条边出现了环,所以环上一定有一条边是从\(x\)连向\(y\),所以在没有这条边时,能从\(y\)连向\(x\)的方案都是不满足的. 因此,上面这个式子就是找出了一条从\(y\)至\(x\)的路径后,连边的方案数.可以看作,\(y\)到\…
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Status][Discuss] Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见 到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑.…