Luogu 3723 [AH2017/HNOI2017]礼物】的更多相关文章

BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + 2c * x_i - 2c * y_i) = \sum_{i = 1}^{n}x_i^2 + \sum_{i = 1}^{n}y_i^2 + nc^2 + (2\sum_{i = 1}^{n}(x_i -y_i))c - 2 * \sum_{i = 1}^{n}x_iy_i$$ 发现第一项和第二项是…
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们可以假设我们旋转\(B\)串,上下要加上的亮度差为\(p\),可以直接拍出一个最暴力的柿子: 设\(f(x)\)表示\(B\)串以\(x\)为开头的差异值,有: \(f(x)=\sum_{i=0}^{x-1}(B[i]-A[i+n-x]+p)^2+\sum_{i=x}^{n-1}(B[i]-A[i-…
传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i)^2-2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2) \] 继续化简: \[ ans=min(\sum\limits_{i=1}^n a_i^2+\sum\limits_{i=1}^n b_i^2-2*\sum\…
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] + c) ^ 2 的最小值 ans[k] = ∑ ( x[i], y[(i + k) % n + 1] ) ^ 2 拆项 发现ans[k] = ∑ x[i] ^ 2 + ∑ y[i] ^ 2  + n * c ^ 2 + 2 * ∑ x[i] * c - 2 * ∑ y[i] * c - 2 *…
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 \(c\)(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物…
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =&\sum_{j=1}^n(a_j^2+b_j^2+i^2-2a_jb_j+2ia_j-2ib_j)\\ =&\sum_{j=1}^na_j^2+\sum_{j=1}^nb_j^2+ni^2+2i\sum_{j=1}^na_j-2i\sum_{j=1}^nb_j-2\sum_{j=1}^na_j…
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面见原题. 参考了洛谷一些题解. 先推式子,x数组为a,y数组为b,将b数组倍长后有: 因为c的范围在[-m,m]之间,而m=100,且稍加思考后发现k在1,3,4项中是无用的,所以通过枚举c取得1,3,4项和的最小值. 考虑计算第二项,其实是卷积型,实际上将a数组前移并倒转即可得到: 变成了卷积,F…
题目链接: https://www.luogu.org/problemnew/show/P3723 题目: 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的…
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造和旋转…
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式子无法化简qwq 把A和b的抛硬币情况连在一起,记成一个01串,那么如果某个串代表B获胜,那么这个串的反串就能代表A获胜 如果\(a=b\),那么答案还要减去平局情况,即\[\frac{2^{a+b}-\binom{a+b}{a}}{2}\] 如果\(a>b\),那么有种特殊情况是代表A获胜的某个串…