本节主要记录一下列表生成式,生成器和迭代器的知识点 列表生成器 首先举个例子 现在有个需求,看列表 [0,1,2,3,4,5,6,7,8,9],要求你把列表里面的每个值加1,你怎么实现呢? 方法一(简单): info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] b = [] # for index,i in enumerate(info): # print(i+1) # b.append(i+1) # print(b) for index,i in enumerate(in…
总结得特别好,转自:https://www.cnblogs.com/wj-1314/p/8490822.html 本节主要记录一下列表生成式,生成器和迭代器的知识点 列表生成器 首先举个例子 现在有个需求,看列表 [0,1,2,3,4,5,6,7,8,9],要求你把列表里面的每个值加1,你怎么实现呢? 方法一(简单): info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] b = [] # for index,i in enumerate(info): # print(i+…
python 生成器 & 迭代器 生成器 (generator) 列表生成式 列表生成式用来生成一个列表,虽然写的是表达式,但是储存的是计算出来的结果,因此生成的列表受到内存大小的限制 示例: a = [x ** 2 for x in range(5)] print(a) 输出结果: [0, 1, 4, 9, 16] 生成器 (generator) 生成器同样可以用来生成一个列表,但是生成器保存的是算法,在每一次调用 next 时才会计算出结果,因此生成的列表不会受到内存大小的限制 示例: a…
1.生成器,迭代器,闭包,装饰器的优点 生成器就是一类特殊的迭代器 迭代器的优点也即生成器的优点: 1.节约内存.python在使用生成器时对延迟操作提供了支持. 2.迭代到下一次的调用时,所使用的参数都是第一次所保留下的. 装饰器就是一类特殊的闭包 闭包的优点:可以实现代码复用性,防止代码冗余,就是让这些变量的值始终保持在内存中,不会在调用后被自动清除. 装饰器的优点:1.在不修改原功能模块代码前提下,还能增加新的功能 2.可以实现代码复用性,防止代码冗余(装饰器就是一类特殊的闭包) 2.生成…
前几天刚开始看 Python ,后因为项目突然到来,导致Python的学习搁置了几天.然后今天看回Python 发现 Yield 这个忽然想不起是干嘛用的了(所以,好记性不如烂笔头.).然后只能 花点时间 回顾一下 廖雪峰老师 Python前面的课程内容了 并对廖老师的课程内容做了以下总结: 迭代器(iter):迭代器是访问集合元素的一种方式.迭代器的对象从集合的第一个元素开始访问,直到所有的元素被访问结束.迭代器只能往前不会退后. 不过也没什么,因为很少在迭代过程中往后退.另外迭代器一大优点是…
把一个列表[]改成()就创建了一个生成器:generator,generator保存的是算法. 可以用于for循环的数据类型:1.集合类型:list tuple dict set str2.generator 可以直接作用于for循环的对象统称为:可迭代对象(Iterable) from collections import Iterable print(isinstance([],Iterable)) print(isinstance({},Iterable)) print(isinstanc…
迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个Stoplteration异常,以终止迭代(只能往后走不能往前退) 2.可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义一个__iter__()方法) 3.协议是一种约定,可迭代对象实现了迭代器协议,python的内部工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象. 迭代:重复做一件事 iterable(可迭代)对象 支持每次返回自己所包含的一个成员的…
在了解Python的数据结构时,容器(container).可迭代对象(iterable).迭代器(iterator).生成器(generator).列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚. 简要说明三者关系 1)可迭代对象包含迭代器.2)如果一个对象拥有__iter__方法,其是可迭代对象:如果一个对象拥有next方法,其是迭代器.3)定义可迭代对象,必须实现…
在正式接触生成器之前,我们先来了解一些概念 容器(container) 容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个迭代获取,可以用in.not in关键字判断元素是否包含在容器中.通常这类数据结构把所有的元素存储在内存中(也有一些特殊的存在). Python中常见的容器对象: list ,deque, ... set, frozensets, ... dict, defaultdict, OrderedDict, Counter, ... tuple, nametuple,…
背景 首先,我不会解释这两个名词,我看过很多遍解释,可还是看不懂,还是直接看使用情景吧. 我们以佩波拉契数列为例,当我们不知道迭代器的情况下,我们写出来的代码可能是这样子的: '''这种方式计算fib(100)都很吃力''' fib = lambda n:fib(n-2) + fib(n-1) if n>1 else 1 或者优化一下,变成这样子: ''' 将迭代结果存入temp中,避免重复的计算, 这样可以提高计算速度,但是当计算fib(4000)时,会报: "maximum recur…