首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Sparse AutoEncoder简介
】的更多相关文章
Sparse AutoEncoder简介
1. AutoEncoder AutoEncoder是一种特殊的三层神经网络, 其输出等于输入:\(y^{(i)}=x^{(i)}\), 如下图所示: 亦即AutoEncoder想学到的函数为\(f_{W,b} \approx x\), 来使得输出\(\hat{x}\)比较接近x. 乍看上去学到的这种函数很平凡, 没啥用处, 实际上, 如果我们限制一下AutoEncoder的隐藏单元的个数小于输入特征的个数, 便可以学到数据的很多有趣的结构. 如果特征之间存在一定的相关性, 则AutoEncod…
Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等.因为我先看了一些深度学习的文章,但是感觉理解得不够,一般要自己编程或者至少要看懂别人的程序才能理解深刻,所以我根据该教程的练习,一步一步做起,当然我也参考了…
(六)6.5 Neurons Networks Implements of Sparse Autoencoder
一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了. main函数, 分五步走,每个函数的实现细节在下边都列出了. %%==========================…
UFLDL实验报告2:Sparse Autoencoder
Sparse Autoencoder稀疏自编码器实验报告 1.Sparse Autoencoder稀疏自编码器实验描述 自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 .自编码神经网络尝试学习一个 的函数.换句话说,它尝试逼近一个恒等函数,从而使得输出 接近于输入 .当我们为自编码神经网络加入某些限制,比如给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下仍然可以发现输入数据中一些有趣的结构.稀疏性可以被简单地解释如下.如果当神经…
七、Sparse Autoencoder介绍
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 .下图是一个自编码神经网络的示例. 自编码神经网络尝试学习一个 的函数.换句话说,它尝试逼近一个恒等函数,从而使得输出 接近于输入 .恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从…
CS229 6.5 Neurons Networks Implements of Sparse Autoencoder
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了. main函数, 分五步走,每个函数的实现细节在下边都列出了. %%===============================================…
【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logistic函数,值域(0,1), 如果训练样本每个像素点没有进行归一化,那将无法进行自编码. 2.训练阶段,向量化实现比for循环实现快十倍. 3.最后产生的图片阵列是将W1权值矩阵的转置,每一列作为一张图片. 第i列其实就是最大可能激活第i个隐藏节点的图片xi,再乘以常数因子C(其中C就是W1第i行元素…
Sparse Filtering简介
当前很多的特征学习(feature learning)算法需要很多的超参数(hyper-parameter)调节, Sparse Filtering则只需要一个超参数--需要学习的特征的个数, 所以非常易于进行参数调节. 1.特征分布及其特性 基本上所有的参数学习算法都是要生成特定的特征分布, 比如sparse coding是要学得一种稀疏的特征, 亦即学到的特征中只有较少的非零项. 基本上所有的特征学习算法都是为了优化特征分布的某些特性的.Sparse Filtering也是这样的一种特征学习…
Exercise:Sparse Autoencoder
斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了 http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html,没有参考肯定编不出来...Σ( ° △ °|||)︴ 也当自己理解了一下 这里的自稀疏编码器,练习上规定是64个输入节点,25个隐藏层节点(我实验中只有20个),输出层也是64个节点,一共有10000个训练样本 具体步骤: 首先在页面上下载sparseae_exercise.zip S…
DL二(稀疏自编码器 Sparse Autoencoder)
稀疏自编码器 Sparse Autoencoder 一神经网络(Neural Networks) 1.1 基本术语 神经网络(neural networks) 激活函数(activation function) 偏置项(bias units) 激活值(activation) 前向传播(forward propagation) 前馈神经网络(feedforward neural network) 1.2 神经元(neuron)模型 这个"神经元"是一个以及偏置项+1为输入值的运算单元,其…