已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值. 分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$则$t=\min\{a,b\}$.由$b^2\ge4ac$得$(2a+b)^2\ge4a $,由于求$t$的最大值,只需考虑$a,b>0$(不然则$t=\min\{a,b\}\le0$)此时由$(2a+b)^2\ge4a $得$1\ge4t$故$t\le\dfrac{1}{4},$当$a=\dfra…