语义分割和实例分割概念 语义分割:对图像中的每个像素都划分出对应的类别,实现像素级别的分类. 实例分割:目标是进行像素级别的分类,而且在具体类别的基础上区别不同的实例. 语义分割(Semantic Segmentation) 输入:一张原始的RGB图像 输出:带有各像素类别标签的与输入同分辨率的分割图像 对预测的分类目标采用one-hot编码,为每个分类类别创建一个输出的channel. 将分割图相加到原始图像上的效果. 语义分割的难点 在经典的网络中,需要经过多层卷积和池化进行提取特征工作,从…
from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里,先介绍几个概念,也是图像处理当中的最常见任务. 语义分割(semantic segmentation) 目标检测(object detection) 目标识别(object recognition) 实例分割(instance segmentation) 语义分割 首先需要了解一下什么是语义分割(s…
前言: 本文将介绍如何基于ProxylessNAS搜索semantic segmentation模型,最终搜索得到的模型结构可在CPU上达到36 fps的测试结果,展示自动网络搜索(NAS)在语义分割上的应用.   随着自动网络搜索(Neural Architecture Search)技术的问世,深度学习已慢慢发展到自动化设计网络结构以及超参数配置的阶段.尤其在AI落地的背景下,许多模型需要部署在移动端设备.依据不同设备(GPU, CPU,芯片等),不同的模型需求(latency, 模型大小,…
目录 0. 论文链接 1. 概述 2. Adapting classifiers for dense prediction 3. upsampling 3.1 Shift-and-stitch 3.2 decreasing subsampling 3.3 Deconvolution(backwards strided convolution) 4. Segmentation Architecture 5. Metric @ 0. 论文链接 FCN(https://arxiv.org/abs/14…
FCN与U-Net语义分割算法 图像语义分割(Semantic Segmentation)是图像处理和是机器视觉技术中关于图像理解的重要一环,也是 AI 领域中一个重要的分支.语义分割即是对图像中每一个像素点进行分类,确定每个点的类别(如属于背景.人或车等),从而进行区域划分.目前,语义分割已经被广泛应用于自动驾驶.无人机落点判定等场景中. 图1 自动驾驶中的图像语义分割 而截止目前,CNN已经在图像分类分方面取得了巨大的成就,涌现出如VGG和Resnet等网络结构,并在ImageNet中取得了…
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. _论文地址:https://arxiv.org/abs/1704.06857_ 应用于语义分割问题的深度学习技术综述 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣.越来越多的应用场景需要精确且高效的分割技术,如自动驾驶.室内导航.甚至虚拟现实与增强现实等.这个需求与视觉相关的各个领域及应用场景下的深…
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. 论文地址:https://arxiv.org/abs/1704.06857 应用于语义分割问题的深度学习技术综述 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣.越来越多的应用场景需要精确且高效的分割技术,如自动驾驶.室内导航.甚至虚拟现实与增强现实等.这个需求与视觉相关的各个领域及应用场景下的深度学…
语义分割是将标签分配给图像中的每个像素的过程.这与分类形成鲜明对比,其中单个标签被分配给整个图片.语义分段将同一类的多个对象视为单个实体.另一方面,实例分段将同一类的多个对象视为不同的单个对象(或实例).通常,实例分割比语义分割更难. 语义和实例分割之间的比较.(来源) 本博客探讨了使用经典和深度学习方法执行语义分割的一些方法.此外,还讨论了流行的损失函数选择和应用. 经典方法 在深度学习时代开始之前,使用了大量的图像处理技术将图像分割成感兴趣的区域.下面列出了一些常用的方法. 灰度分割 最简单…
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3D Semantic Segmentation 摘要 无监督域自适应(UDA)对于解决新域中缺少注释的问题至关重要.有许多多模态数据集,但大多数UDA方法都是单模态的.在这项工作中,我们探索如何从多模态学*,并提出跨模态UDA(xMUDA),其中我们假设存在二维图像和三维点云进行三维语义分割.这是一…
Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法. 在传统的GAN网络中,discriminator大多是用来进行输入图像的真伪分类(Datasets里面sample的图片打高分,generator产生的图片打低分),而本文设计了一种全卷积的discriminator,用于区分输入标签图中各个像素(pixel-wise)的分类结果是ground…
Semi-Supervised Semantic Segmentation with High- and Low-level Consistency TPAMI 2019 论文原文 code 创新点: 利用两个分支结构分别处理low-level和high-level的特征,进行半监督语义分割 网络结构 上分支:Semi-Supervised Semantic Segmentation GAN (s4GAN) 下分支:Multi-Label Mean Teacher (MLMT) s4GAN 训练…
1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络和边界网络(Smooth Network and Border Network).平滑网络用的是通道注意力块(Channel Attention Block),来解决类内不一致性.边界网络集成了语义边界损失. 2.相关工作 Encoder-Decoder:主要考虑如何恢复由于池化造成的空间信息损失,…
文章来源:https://www.tinymind.cn/articles/410 本文来自 CSDN 网站,译者蓝三金 图像的语义分割是将输入图像中的每个像素分配一个语义类别,以得到像素化的密集分类.虽然自 2007 年以来,语义分割/场景解析一直是计算机视觉社区的一部分,但与计算机视觉中的其他领域很相似,自 2014 年 Long 等人首次使用全卷积神经网络对自然图像进行端到端分割,语义分割才有了重大突破. 图1:输入图像(左),FCN-8s 网络生成的语义分割图(右)(使用 pytorch…
论文原文原文地址 Motivations 传统的训练方式需要针对不同 domain 的数据分别设计模型,十分繁琐(deploy costs) 语义分割数据集标注十分昂贵,费时费力 Contributions 本文提出的统一模型可以实现跨领域统一训练 模型使用少量的标注数据和大量未标注数据(半监督模型) 网络架构/方法实现 基本结构:一个encoder和n个decoder(decoder数量和domain的数量相同) 基本设定:假设共有两个数据集domainA和domainB,每个domain中都…
写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感兴趣的请根据自己情况找来完整文章阅读学习. 图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个像素点进行分类,将图像分割为若干个视觉上有意义的或感兴趣的区域,以利于后续的图像分析和视觉理解.近年来,深度卷积神经网络(Deep Convolutional Neural Network, DCN…
部分转自:https://zhuanlan.zhihu.com/p/37618829 一.语义分割基本介绍 1.1 概念 语义分割(semantic segmentation) : 就是按照"语义"给图像上目标类别中的每一点打一个标签,使得不同种类的东西在图像上被区分开来.可以理解成像素级别的分类任务. 输入: (HW3)就是正常的图片 输出: ( HWclass )可以看为图片上每个点的one-hot表示,每一个channel对应一个class,对每一个pixel位置,都有class…
基于MIndSpore框架的道路场景语义分割方法研究 概述 本文以华为最新国产深度学习框架Mindspore为基础,将城市道路下的实况图片解析作为任务背景,以复杂城市道路进行高精度的语义分割为任务目标,对上述难处进行探究并提出相应方案,成功地在Cityscapes数据集上完成了语义分割任务. 整体的技术方案见图: 本帖仅对代码上的更改以及项目进行介绍. 项目地址 https://gitee.com/xujinminghahaha/mindspore_model 相关配置 硬件配置 操作系统 Ub…
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘要: 在过去的5年里面,卷积神经网络在语义分割领域大获全胜,语义分割是许多其他应用的核心任务之一,这其中包括无人驾驶.增强现实.然而,训练一个卷积神经网络需要大量的数据,而对于这些数据的收集和标注是极其困难的.计算机图形学领域的最新研究进展使得利用计算机生成的注释在接近真实照片的合成图像上训练CNN…
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完…
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pixel级别的GroundTruth太难标注,因此弱监督成了人们研究的一个热门方向. 作者的核心思想是提出了层层递进的三个DCNN. 具体来讲,作者一共训练了三个网络:Initial DCNN.Enhanced DCNN和Powerful DCNN.分别解释如下: 1 . Initial DCNN:…
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille, Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 U…
3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a 动机 主要针对的任务是RGBD语义分割, 不同于往常的RGB图像的语义分割任务, 这里还可以更多的考虑来自D通道的深度信息. 所以对于这类任务需要联合2D外观和3D几何信息来进行联合推理. 深度信息编码 关于将深度信息编码为图像的方法有以下几种: 通过HHA编码来将深度信息编码为三通道: hori…
Decoders Matter for Semantic Segmentation:Data-Dependent Decoding Enables Flexible Feature Aggregation https://www.yuque.com/lart/papers 动机 语义分割领域最常用的编解码方案中, 上采样是一个重要的环节, 用来恢复分辨率. 常用的是, 双线性插值和卷积的配合. 相较于具有一定的棋盘效应的转置卷积, 双线性插值简单快捷, 而且配合后续卷积, 也可以实现和转置卷积类…
作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik 该论文提出了一种简单且可扩展的检测算法,在VOC2012数据集上取得的mAP比当时性能最好的算法高30%.算法主要结合了两个key insights: (1)可以将高容量的卷积神经网络应用到自底向上的Region proposals(候选区域)上,以定位和分割目标 (2)当带标签的训练数据稀少时,可以先使用辅助数据集进行有监督的预训练,然后再使用训练集对网络的特定范围进行微调,…
图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点都分类,物体的轮廓是精准勾勒的,而不是像检测那样给出边界框. 图像分割可以分为两类:语义分割(Semantic Segmentation)和实例分割(Instance Segmentation),其区别如图所示. 可以看到语义分割只是简单地对图像中各个像素点分类,但是实例分割更进一步,需要区分开不同…
来自 MIT CSAIL 的研究人员开发了一种精细程度远超传统语义分割方法的「语义软分割」技术,连头发都能清晰地在分割掩码中呈现.在对比实验中,他们的结果远远优于 PSPNet.Mask R-CNN.spectral matting 等基准.这项技术对于电影行业的 CGI 技术具有重大意义,精细的分割掩码能很好地分离图像中的前景和背景,只要鼠标一点,就能轻易地改变前景.背景的种类.也就是说,像<变形金刚><复仇者联盟><奇幻森林>中的大部分电影特效将可以完全自动化地生成…
上一次发博客已经是9月份的事了....这段时间公司的事实在是多,有写博客的时间都拿去看paper了..正好春节回来写点东西,也正好对这段时间做一个总结. 首先当然还是好好说点这段时间的主要工作:语义分割.semantic segmentation 应该是DL这几年快速发展的最重要的领域之一了,但可惜的事,在这方面大家走的并不是很远,还是有很多值得改进的地方,这当然是个很好的事情,特别是我这种想发paper弱渣..... 语义分割做的是什么事呢? 就是给你一张图,你要对其中的每个pixel做分类,…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52857657 把前段时间自己整理的一个关于卷积神经网络应用于图像语义分割的PPT整理发布在本篇博客内,由于部分内容还在研究或发表过程中,就只上传PPT前两部分的内容. 今天给大家介绍卷积神经网络在图像语义分割上的一些方法和应用. PPT的目录包括,语义分割的简单介绍,然后介绍一些我的研究和具体的应用,最后简单说一下我最近的一些研究工作.…
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract   Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed…
Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik UC Berkeley 丰富多级特征用于精准对象检测和语义分割 --------------------------------------------------------------------------------…