python opencv3 人脸识别的例子】的更多相关文章

一个人脸识别的例子 程序中用到了公共数据集, 欢迎去我的git上下载源码,源码里带有数据集 git:https://github.com/linyi0604/Computer-Vision 脚本中一个三个函数 第一个: 调用本机摄像头采集一些自己的照片 作为数据集的一部分 第二个:把自己的照片 和公共数据集照片一并读取 作为输入数据 第三个: 预测函数  调用第二个函数拿到x 和y 进行训练后 开启摄像头 进行预测 # coding:utf-8 import cv2 import os impo…
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数…
本文的模型使用了C++工具箱 dlib 基于深度学习的最新人脸识别方法,基于户外脸部数据测试库Labeled Faces in the Wild 的基准水平来说,达到了99.38%的准确率. dlib :dlib C++ Library 数据测试库Labeled Faces in the Wild:LFW Face Database : Main 模型提供了一个简单的 face_recognition 命令行工具让用户通过命令就能直接使用图片文件夹进行人脸识别操作. 特征 在图片中捕捉人脸 在一…
人脸识别主要步骤: face_recognition 库的安装 安装此库,首先需要安装编译dlib,此处我们偷个懒,安装软件Anaconda(大牛绕过),此软件预装了dlib. 安装好后,我们直接通过pip 安装face_recognition库,命令如下 python -m pip install face_recognition 调用一下库,检查是否成功导入 没报错,就是安装成功了. 按照以上办法在安装numpy 和python-opencv 两个库就可以了 通过face_recogniti…
介绍 人脸识别是什么?或识别是什么?当你看到一个苹果时,你的大脑会立刻告诉你这是一个苹果.在这个过程中,你的大脑告诉你这是一个苹果水果,用简单的语言来说就是识别.那么什么是人脸识别呢?我肯定你猜对了.当你看着你的朋友走在街上或他的照片时,你会认出他是你的朋友保罗.有趣的是,当你看你的朋友或他的照片时,你首先要看他的脸,然后再看其他东西.你想过为什么要这么做吗?这是为了让你看他的脸就能认出他来.好吧,这是你的面部识别. 但真正的问题是人脸识别是如何工作的?它非常简单和直观.举一个现实生活中的例子,…
当前,人脸识别应用于许多领域,如支付宝的用户认证,许多的能识别人心情的 AI,也就是人的面部表情,还有能分析人的年龄等等,而这里面有着许多的难度,在这里我想要分享的是一个利用七牛 SDK 简单的实现人脸识别的方法,当然七牛的 SDK 中提供了很多的拓展,在返回的 JSON 中包含着如年龄等信息,这里就不进行分享了.这里我们要使用的是七牛云平台中由阅面科技提供的 API. 以下为官方给出的功能: 人脸 1v1 比对 人脸关键点(106 点) 人脸属性(年龄,性别) 我们要用的服务就是第一个:人脸…
今天在搜索人脸识别的文章时,无意中搜到一个比较开源代码,介绍说是这个系统人脸的识别率 是比较高的,可以达到:99.38%.这么高的识别率,着实把我吓了一跳.抱着实事求是的态度.个人 就做了一些验证和研究. 按照github和网上的例子,安装成功后,使用里面的测试用例进行测试.从网上下载了十个人多 图片,能够识别到人脸的概率的确很高,基本可以达到上面的参数. 在识别到具体人的例子中,我拿例子自带的图片+自己拍摄的图片进行对比.发现这个识别率的确挺 高的.当从网上down下来的照片进行测试时,发现系…
微信:一个提供即时通讯服务的应用程序,更是一种生活方式,超过数十亿的使用者,越来越多的人选择使用它来沟通交流. 不知从何时起,我们的生活离不开微信,每天睁开眼的第一件事就是打开微信,关注着朋友圈里好友的动态,而朋友圈中或虚或实的状态更新,似乎都在证明自己的“有趣”,寻找那份或有或无的存在感. ​ ​ 有人选择在朋友圈记录生活的点滴,有人选择在朋友圈展示自己的观点.有时我们想去展示自己,有时又想去窥探着别人的生活,而有时又不想别人过多的了解自己的生活,或是屏蔽对方,或是不给对方看朋友圈,又或是不想…
总计分为三个步骤 一.捕获人脸照片 二.对捕获的照片进行训练 三.加载训练的数据,识别 使用python3.6.8,opencv,numpy,pil 第一步:通过笔记本前置摄像头捕获脸部图片 将捕获的照片存在picData文件夹中,并格式为user.id.num.jpg.id在识别时和人名数组一一对应. import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("dat…
识别图片 #coding=utf-8 import requests,cv2 import re import os import bs4 #2.读取图片 filename = 'E:/Python/Crawler/faces/face7.jpg' image = cv2.imread(filename) #3.加载人脸模型 级联分类器 face_moel = cv2.CascadeClassifier('E:/Python/Crawler/faces/facemodel.xml') #4.对图…