Tensorflow name_scope】的更多相关文章

在 Tensorflow 当中有两种途径生成变量 variable, 一种是 tf.get_variable(), 另一种是 tf.Variable(). 使用tf.get_variable()定义的变量不会被tf.name_scope()当中的名字所影响 import tensorflow as tf with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) var1 = tf…
ILSVRC(ImageNet Large Scale Visual Recognition Challenge)分类比赛.AlexNet 2012年冠军(top-5错误率16.4%,额外数据15.3%,8层神经网络).VGGNet 2014年亚军(top-5错误率7.3%,19层神经网络).Google Inception 2014年冠军(top-5错误率6.7%,22层神经网络).ResNet 2015年冠军(top-5错误率3.57%,152层神经网络).人眼错误率5.1%.卷积神经网络基…
在训练深度网络时,为了减少需要训练参数的个数(比如LSTM模型),或者是多机多卡并行化训练大数据.大模型等情况时,往往就需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要.因此,tensorflow中用tf.Variable(), tf.get_variable, tf.Variable_scope(), tf.name_scope() 几个函数来实现: tf.Variable…
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命名冲突,系统会自己处理.使用tf.get_variable()时,系统不会处理冲突,而会报错 import tensorflow as tf w_1 = tf.Variable(3,name="w_1") w_2 = tf.Variable(1,name="w_1")…
一.上下文管理器(context manager) 上下文管理器是实现了上下文协议的对象,主要用于资源的获取与释放.上下文协议包括__enter__.__exit__,简单说就是,具备__enter__()和__exit__()方法的类就可以实现上下文管理,做到文件的自动关闭,这样的类实例化的对象就是上下文管理器. 典型的例子就是读写文件的操作.使用open()函数打开文件,操作之后再用close()函数关闭文件.如果使用上下文管理器的的话就会简洁方便些,因为File()类内部包含有__ente…
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行一些描述性语言,跟html很像,很适合用标记性语言来描述. Tensorflow是有向图,是一个有向无环图.张量为边,操作为点,数据在图中流动. Tensorflow为每个结点都起了唯一的一个名字. import tensorflow as tf a = tf.constant(3) # name=…
tensorflow里面共享变量.name_scope, variable_scope等如何理解 name_scope, variable_scope目的:1 减少训练参数的个数. 2 区别同名变量 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共…
转载http://blog.csdn.net/jerr__y/article/details/60877873 1. 首先看看比较简单的 tf.name_scope(‘scope_name’). tf.name_scope 主要结合 tf.Variable() 来使用,方便参数命名管理. ''' Signature: tf.name_scope(*args, **kwds) Docstring: Returns a context manager for use when defining a…
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable can be us…
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable("arr1", shape=[2,10],dtype=tf.float32) print (name_scope) print (arr1.name) print ("scope_name:%s " % tf.get_variable_scope().original_…