Focal Loss理解】的更多相关文章

1. 总述 Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题.该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘. 2. 损失函数形式 Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失: 是经过激活函数的输出,所以在0-1之间.可见普通的交叉熵对于正样本而言,输出概率越大损失越小.对于负样本而言,输出概率越小则损失越小.此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优.那么Foc…
本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡.分类难度差异的一个 loss,总之这个工作一片好评就是了. 看到这个 loss,开始感觉很神奇,感觉大有用途.因为在 NLP 中,也存在大量的类别不平衡的任务.最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况. 硬截断 整篇文章都是从二分类问题出发,同样的思想可以用于多分类问题.二分类问题的标准 loss 是交叉熵. 其中 y∈{0,1} 是真…
[本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失的贡献. 本文分享自华为云社区<技术干货 | 基于MindSpore更好的理解Focal Loss>,原文作者:chengxiaoli. 今天更新一下恺明大神的Focal Loss,它是 Kaiming 大神团队在他们的论文Focal Loss for Dense Object Detection…
Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题,其指出其根本原因是样本类别不均衡导致,一针见血,通过改变传统的loss(CE)变为focal loss,瞬间提升了one-stage网络的准确率.与此同时,为了测试该loss对网络改进的影响,文章还特地设计了一个网络,retina net,证明了其想法. Problems 为啥one-stage网…
为了有效地同时解决样本类别不均衡和苦难样本的问题,何凯明和RGB以二分类交叉熵为例提出了一种新的Loss----Focal loss 原始的二分类交叉熵形式如下: Focal Loss形式如下: 上式中,相对于原始的二分类交叉熵加入了两个量:1.modulating factor:(其中幂称为focusing parameter):2.: 现在分别来解释一下两个分量的作用: (1)第一个分量称为调制系数,它的作用是困难样本挖掘,比如p越大,则表示它更趋于是简单正样本,则对应的调制系数则更小,即简…
Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题.下面以目标检测应用场景来说明. 一些 one-stage 的目标检测器通常会产生很多数量的 anchor box,但是只有极少数是正样本,导致正负样本数量不均衡.这里假设我们计算分类损失函数为交叉熵公式. 由于在目标检测中,大量的候选目标都是易分样本,这些样本的损失很低,但是由于数量极不平衡,易分样本数量相对来说太多,最终主导了总的损失…
0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的.在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失.然后我们从样本权利的角度出发,理解Focal Loss是如何分配样本权重的.Focal是动词Focus的形容词形式,那么它究竟Focus在什么地方呢? 1 交叉熵 1.1 交叉熵损失(Cross Entropy Loss) 有\(N\)个样本,输入一个\(C\)分类器,得到的输出为\(X\in \mathcal{…
文章来自公众号[机器学习炼丹术] 1 focal loss的概述 焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务. 当然,在目标检测中,可能待检测物体有1000个类别,然而你想要识别出来的物体,只是其中的某一个类别,这样其实就是一个样本非常不均衡的一个分类问题. 而Focal Loss简单的说,就是解决样本数量极度不平衡的问题的. 说到样本不平衡的解决方案,相比大家是知道一个混淆矩阵的f1-score的,但是这个好像不能用在训练中当成损失.而Focal…
Focal loss是目标检测领域的一篇十分经典的论文,它通过改造损失函数提升了一阶段目标检测的性能,背后关于类别不平衡的学习的思想值得我们深入地去探索和学习.正负样本失衡不仅仅在目标检测算法中会出现,在别的机器学习任务中同样会出现,这篇论文为我们解决类似问题提供了一个很好的启发,所以我认为无论是否从事目标检测领域相关工作,都可以来看一看这篇好论文. 论文的关键性改进在于对损失函数的改造以及对参数初始化的设置. 首先是对损失函数的改造.论文中指出,限制目标检测网络性能的一个关键因素是类别不平衡.…
目录 Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection 一. 论文简介 将目标检测Loss和评价指标统一,提升检测精度.这是一篇挺好的论文,下面会将其拓展到其它领域. 主要做的贡献如下(可能之…