tensorflow实现RNN及Word2Vec】的更多相关文章

参考:<tensorflow实战> 首先介绍一下Word2Vec Word2Vec:从原始语料中学习字词空间向量的预测模型.主要分为CBOW(Continue Bags of Words)连续词袋模型和Skip-Gram两种模式 CBOW:从原始语句(中国的首都是___)推测目标字词(北京).Skip-Gram正好相反,从目标词反推原始语句. 预测模型使用最大似然的方法.在给定前面的语句h的情况下,最大化目标词汇的概率.比如(中国的___是北京),首都就是我们的目标词汇. 使用NCE(噪声对比…
RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统.文本分类等. 但由于梯度爆炸或梯度消失,RNN存在长期依赖问题,难以建立长距离的依赖关系,于是引入了门控机制来控制信息的累积速度,包括有选择地加入新信息,并有选择地遗忘之前积累的信息.比较经典的基于门控的RNN有LSTM(长短期记忆网络)和GRU(门控循环单元网络). 有关RNN,LSTM和GRU…
一 初始化RNN 上一节中介绍了 通过cell类构建RNN的函数,其中有一个参数initial_state,即cell初始状态参数,TensorFlow中封装了对其初始化的方法. 1.初始化为0 对于正向或反向,第一个cell传入时没有之前的序列输出值,所以需要对其进行初始化.一般来讲,不用刻意取指定,系统会默认初始化为0,当然也可以手动指定其初始化为0. initial_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) 2.初…
转子:https://www.leiphone.com/news/201705/zW49Eo8YfYu9K03J.html 最近在看RNN模型,为简单起见,本篇就以简单的二进制序列作为训练数据,而不实现具体的论文仿真,主要目的是理解RNN的原理和如何在TensorFlow中构造一个简单基础的模型架构.其中代码参考了这篇博客. 数据集 首先我们看一下实验数据的构造: 输入数据X:在时间t,Xt的值有50%的概率为1,50%的概率为0: 输出数据Y:在实践t,Yt的值有50%的概率为1,50%的概率…
使用tensorflow实现了简单的rnn网络用来学习加法运算. tensorflow 版本:1.1 import tensorflow as tf from tensorflow.contrib import rnn class RNN(): def __init__(self, input_dim , hidden_dim , step_num , class_num,learning_rate): # # tf Graph input self.x = tf.placeholder("fl…
其训练数据源在我的空间里,名字为:tensorflow的ptb-word-lm示例的训练数据源.tgz 讲解参见另一篇文章:  http://www.cnblogs.com/welhzh/p/6739370.html """Example / benchmark for building a PTB LSTM model. Trains the model described in: (Zaremba, et. al.) Recurrent Neural Network Re…
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如下图所示: 将这个循环展开得到下图: 上一时刻的状态会传递到下一时刻.这种链式特性决定了RNN能够很好的处理序列化的数据,RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得了很到的结果. 根据输入.输出的不同和是否有延迟等一些情况,RNN在应用中有如下一些形态: RNN存在的问题 RNN能…
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space.", 20131 from __future__ import division, print_function, absolute_import import collect…
from: http://lan2720.github.io/2016/07/16/%E8%A7%A3%E8%AF%BBtensorflow%E4%B9%8Brnn/ 这两天想搞清楚用tensorflow来实现rnn/lstm如何做,但是google了半天,发现tf在rnn方面的实现代码或者教程都太少了,仅有的几个教程讲的又过于简单.没办法,只能亲自动手一步步研究官方给出的代码了. 本文研究的代码主体来自官方源码ptb-word-lm.但是,如果你直接运行这个代码,可以看到warning: WA…
一.学习单步的RNN:RNNCell 如果要学习TensorFlow中的RNN,第一站应该就是去了解“RNNCell”,它是TensorFlow中实现RNN的基本单元,每个RNNCell都有一个call方法,使用方式是:(output, next_state) = call(input, state). 借助图片来说可能更容易理解.假设我们有一个初始状态h0,还有输入x1,调用call(x1, h0)后就可以得到(output1, h1): 再调用一次call(x2, h1)就可以得到(outp…