题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行正面刚和式也是能搞的(反正我不会). 一次Dirichlet卷积复杂度是O(nlogn)的,所以总时间复杂度为O(nlognlogk). 注:普及Dirichlet卷积概念,设f,g为两个数论函数, 那么规定 (f∗g)=∑d|nf(d)g(n/d)为f,g的Dirichlet卷积 Dirichle…
\(Description\) \[g(i)=\sum_{i_1|i}\sum_{i_2|i_1}\sum_{i_3|i_2}\cdots\sum_{i_k|i_{k-1}}f(i_k)\ mod\ 1000000007\] 给出\(n,k,f[1\sim n]\),求\(g[1\sim n]\). \(Solution\) 首先狄利克雷卷积(Dirichlet Product):设\(f(n),g(n)\)是两个数论函数,它们的Dirichlet乘积也是一个数论函数, \[h(n)=\sum_…
HDU 5628 Clarke and math 本文属于一个总结了一堆做法的玩意...... 题目 简单的一个式子:给定$n,k,f(i)$,求 然后数据范围不重要,重要的是如何优化这个做法. 这个式子有$n$种问法,而且可以变式扩展,所以说这个式子也是比较重要的: 我们约定如果给定了$n,k$那么我们的$g$写作$g_k(n)$,如果给定了$n,k$中间的任意一个,枚举另一个,或者另一个是变化的,那么另一个数记为$i,j$ 把$1~n$或$1~k$的$g_k(i)$或$g_i(n)$都求出来…
Clarke and math 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5628 Description Clarke is a patient with multiple personality disorder. One day, he turned into a mathematician, did a research on interesting things. Suddenly he found a interesting fo…
hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \sum_{i_2 \mid i_1} \sum_{i_3 \mid i_2} \cdots \sum_{i_k \mid i_{k-1}} f(i_k) \text{ mod } 1000000007 \quad (1 \le i \le n)\) 题解 Dirichlet convolution -w…
转载自https://oi-wiki.org/math/mobius/ 积性函数 定义 若 $gcd(x,y)=1$ 且 $f(xy)=f(x)f(y)$,则 $f(n)$ 为积性函数. 性质 若 $f(x)$ 和 $f(y)$ 均为积性函数,则以下函数为积性函数: $h(x) = f(x^p)$ $h(x) = f^p(x)$ $h(x) = g(x)f(x)$ $h(x) = \sum_{d|x} f(d)g(\frac{x}{d})$ 后面两条性质非常重要,会经常用.它说明了两个积性函数的…
简单积性函数 在学习欧拉函数的时候,相信读者对积性函数的概念已经有了一定的了解.接下来,我们将相信介绍几种简单的积性函数,以备\(dirichlet\)卷积的运用. 定义 数论函数:在数论上,对于定义域为正整数,值域为复数的函数,我们称之为数论函数. 积性函数:对于数论函数\(f\),若满足\(gcd(a,b)=1\)时,有\(f(ab)=f(a)f(b)\),则称函数\(f\)为积性函数 简单积性函数 约数个数函数 \[\tau(n)=\sum_{k|n}1\] 约数和函数 \[\sigma(…
Dirichlet 卷积学习笔记 数论函数:数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值或复值函数,更一般地,也可把数论函数看做是某一整数集上定义的函数. 然而百科在说什么鬼知道呢,感性理解一下,数论函数的定义域是正整数,值域也是正整数. 数论函数的相关运算与性质 设有数论函数\(\bf{h,f,g}\). 加法运算 \((\mathbf {f}+\mathbf {g})(n)=\mathbf {f}(n)+\mathbf {g}(n)\) 即每项相加 数乘运算 \((x\ma…
Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $f * g$ 常用: $\mu * 1 = \epsilon$ $\phi * 1 = id$ $\epsilon(n) = [n=1]$ $id(n)=n$ Mobius 反演是基于 Dirichlet 卷积的一种....化简式子的方法? 比较有用的结论就是 $\mu * 1 = [n=1]$ 由…
比赛时候面向过题队伍数目 打表- - 看了题解发现确实是这么回事,分析能力太差.. /* HDU 6063 - RXD and math [ 数学,规律 ] | 2017 Multi-University Training Contest 3 题意: 求 Σ μ(i)^2 * sqrt( n^k/i ) [ 1 <= i<= n^k ] n,k <= 1e18 分析: 首先 μ(i) 为莫比乌斯函数,若 i 是完全平方数的倍数则 μ(i) = 0 ,否则 μ(i) = ±1 所以只有不是…