R 培训之 Table】的更多相关文章

res = read.table("ttest_expression.tsv",sep=",",header = TRUE)rownames(res)=res[,colnames(res)[1]] res[rownames(res),colnames(res)[2:length(colnames(res))]] res = read.table(exp_file, header=T, quote="",row.names=1, sep='\t',…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "…
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数据. # 用read.csv读取数据timestart<-Sys.time() data <- read.csv("XXXXs.csv",header = T,stringsAsFactors = F) timeend<-Sys.time() runningtime<…
这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时间.一个数据表格包含三部分,即DT[i, j, by].你可以理解为我们告诉R用i来选出行的子集,并计算通过by来分组的j.大多数时候,by是用于类别变量的. 特点 data.table(DT)的操作语句类似于SQL,DT[i, j, by]中的i, j, by 对应着SQL语句的 i=where,…
目录 问题 解决一 解决二 问题 这个问题应该很常见吧.R中输出数据框时,想要把行名和列名都输出.如果直接输出的话,输出的结果列名会往前移动一位,这显然不是我们想要的. 直接上例子: > a = matrix(1:9, nrow = 3, ncol = 3, dimnames = list(LETTERS[1:3], LETTERS[1:3])) > a A B C A 1 4 7 B 2 5 8 C 3 6 9 直接保存: write.table(a,"a.txt",ro…
今天遇到了一个问题,文件中有一列的值为全为F, 用read.table 读取的时候,自动将F 变成了false 对于这样的转换,可以通过 colClass 参数控制 colClass 参数指定每一列的类型,numeric, integer,  character, logical 等等,只需要将全是F的那一列指定为 character 就可以了 read.table( "file.txt" , sep = "\t", header=FALSE, stringsAsF…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta…
由于基因组数据过大,想进一步用R语言处理担心系统内存不够,因此想着将文件按染色体拆分,发现python,awk,R 语言都能够非常简单快捷的实现,那么速度是否有差距呢,因此在跑几个50G的大文件之前,先用了244MB的数据对各个脚本进行测试,并且将其速度进行对比. 首先是awk处理,awk进行的是逐行处理,具有自己的语法,具有很大的灵活性,一行代码解决,用时24S, #!/usr/bin/sh function main() { start_tm=date start_h=`$start_tm…