Noise Contrastive Estimation】的更多相关文章

Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0,\cdots,y_{i}^{k}]\] where \(y_i^0\) are true labeled words , and \(y_i^1,\cdots,y_i^{k}\) are noise samples word index, which is generated by unigram…
Notes on Noise Contrastive Estimation and Negative Sampling ## 生成负样本 在常见的关系抽取应用中,我们经常需要生成负样本来训练一个好的系统.如果没有负样本,系统会趋向于把所有的变量分类成正类.但是,在关系抽取中,并不容易找到足够的高质量的负样本(ground truth).这种情况下,我们通常需要使用distant supervision来生成负样本. 负样本的生成多少可看成是一种艺术.以下讨论了几种常用的方法,还有些方法没有列出.…
也就是构造一棵Huffman Tree,输入是按照词汇频次由高到低排序的 采用层次SoftMax的做法,是为了使得训练和预测时候的softmax输出加速,原有multinomal softmax,是和 训练词汇量|V|成正比的,而现在由于二叉树的特性,变成了log(|V|),也就是平均每个预测只做log(|V|)次 的binary的softmax.当然还有另外一种不采用HSTree的方法也就是nce(Noise Contrastive Estimation),后面再分析.     由于</s>…
https://github.com/kjw0612/awesome-rnn Faster Recurrent Neural Network Language Modeling Toolkit with Noise Contrastive Estimation and Hierarchical Softmax…
前置点评: 这篇文章比较朴素,创新性不高,基本是参照了google的word2vec方法,应用到推荐场景的i2i相似度计算中,但实际效果看还有有提升的.主要做法是把item视为word,用户的行为序列视为一个集合,item间的共现为正样本,并按照item的频率分布进行负样本采样,缺点是相似度的计算还只是利用到了item共现信息,1).忽略了user行为序列信息; 2).没有建模用户对不同item的喜欢程度高低. ------------------------------------------…
Preamble This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an advanced course on natural language processing. Automatica…
word2vec word2vec 是Mikolov 在Bengio Neural Network Language Model(NNLM)的基础上构建的一种高效的词向量训练方法. 词向量 词向量(word embedding ) 是词的一种表示,是为了让计算机能够处理的一种表示. 因为目前的计算机只能处理数值, 诸英文,汉字等等它是理解不了的, 最简单地让计算机处理自然语言的方式就是为每个词编号, 每个编号就代表其对应的词, 这就是one-hot编码(或称one-hot前身,因为one-hot…
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list Pytorch & related libraries pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration. pytorch extras :…
Distributed Representation 这种表示,它最早是 Hinton 于 1986 年提出的,可以克服 one-hot representation 的缺点. 其基本想法是: 通过训练将某种语言中的每一个词映射成一个固定长度的短向量(当然这里的“短”是相对于 one-hot representation 的“长”而言的),将所有这些向量放在一起形成一个词向量空间,而每一向量则为该空间中的一个点,在这个空间上引入“距离”,则可以根据词之间的距离来判断它们之间的(词法.语义上的)相…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…