深度学习+CRF解决NER问题】的更多相关文章

参考https://github.com/shiyybua/NER 1.开发环境:python3.5+tensorflow1.5+pycharm 2.从https://github.com/shiyybua/NER load工程NER,由于下载的原始代码是基于python2.7的,首先利用2to3.py工具将rnn.py.utils.py转换为python3.x代码. 3.将工程导入pycharm中,此时直接运行会报'Parent module '' not loaded, cannot per…
过拟合,在Tom M.Mitchell的<Machine Learning>中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据. 也就是说,某一假设过度的拟合了训练数据,对于和训练数据的分布稍有不同的数据,错误率就会加大.这一般会出现在训练数据集比较小的情况. 深度学习中避免过拟合的方法: Dropout      2012年ImageNet比赛的获胜模型A…
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from PIL import Image lr = 0.01 momentum = 0.5 epochs = 10 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(pa…
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器学习的未来走向做些预测. [编者按]在上个月发表博客文章<深度学习 vs. 机器学习 vs. 模式识别>之后,CMU博士.MIT博士后及vision.ai联合创始人Tomasz Malisiewicz这一次带领我们回顾50年来人工智能领域三大范式(逻辑学.概率方法和深度学习)的演变历程.通过本文我…
个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常有用. 但即使这样,单机的计算能力还是相对有限的. 深度学习开源工具 从数学上来讲,深度神经网络其实不复杂,我们定义不同的网络结构,比如层次之间怎么连接,每层有多少神经元,每层的激活函数是什么.前向算法非常简单,根据网络的定义计算就好了. 而反向传播算法就比较复杂了,所以现在有很多深度学习的开源框架…
每年由美国计算机协会(Association of Computing Machinery,简称ACM)计算机图形专业组举办的年会SIGGRAPH,是全球最负盛名的图形学和交互技术盛会.今年已经是这场图形学盛宴的第四十四届,本届大会于7月30日至8月3日在美国洛杉矶举行. 作为著名的好莱坞所在地,洛杉矶聚集了大量影视特效等工业界的从业人员,而SIGGRAPH正是工业界展示自己炫酷技术,以及和学术界交流的一个绝佳平台,所以SIGGRAPH组委会多次选择洛杉矶作为大会举办地. 除了像其它学术会议一样…
摘要-本文使用深度学习的方法在大规模MIMO网络的下行链路中执行max-min和max-prod功率分配.更确切地说,与传统的面向优化的方法相比,训练深度神经网络来学习用户设备(UE)的位置和最优功率分配策略之间的映射,然后用于预测新的UE集合的功率分配曲线。与传统的优化定向方法相比,使用深度学习的方法显著提高了功率分配的复杂性-性能折衷。特别地,所提出的方法不需要计算任何统计平均值,而是需要使用标准方法来计算,并且能够保证接近最优的性能. 1 引言 大规模MIMO是指一种无线网络技术,其中基站…
原文:Deep Learning Quick Reference 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 深度学习快速参考 零.前言 一.深度学习的基础 二.使用深度学习解决回归问题 三.使用 TensorBoard 监控网络训练 四.使用深度学习解决二分类问题 五.使用 Keras 解决多分类问题 六.…
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,…
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CRF 实现 sequence labeling  双向LSTM+CRF跑序列标注问题 源码下载 去年底样子一直在做NLP相关task,是个关于序列标注问题.这 sequence labeling属于NLP的经典问题了,开始尝试用HMM,哦不,用CRF做baseline,by the way, 用的CR…