NumPy进阶】的更多相关文章

目录 1. 如何获取满足条设定件的索引 2. 如何将数据导入和导出csv文件 3. 如何保存和加载numpy对象 4. 如何按列或行拼接numpy数组 5. 如何按列对numpy数组进行排序 6. 如何用numpy处理日期 7.高阶numpy函数介绍 1. 如何获取满足条设定件的索引 # 定义数组 import numpy as np arr_rand = np.array([8, 8, 3, 7, 7, 0, 4, 2, 5, 2]) #根据数组是否大于4,满足为True,不满足为False…
import numpy as np; #创建数组的四种办法 ##可以传入任何类数组 a = np.array([0,1,2,3,4]); b = np.array((0,1,2,3,4)); c = np.arange(5); d = np.linspace(0,2*np.pi,5); print(a); print(b); print(c); print(d); [0 1 2 3 4] [0 1 2 3 4] [0 1 2 3 4] [0. 1.57079633 3.14159265 4.7…
impoort numpy as np arr=np.arange(10) #输出奇数 arr[arr%2==1] #将arr中的所有奇数替换为-1,而不改变arr out=np.where(arr%2==1,-1,arr) a = np.arange(10).reshape(2,-1) b = np.repeat(1, 10).reshape(2,-1) #垂直叠加两个数组 np.vstack([a,b]) #np.concatenate([a,b],axis=0) #np.r_[a, b]…
数组算术 任何两个等尺寸数组之间的算术操作都应用了逐元素操作的方式. arr1 = np.array([[1,2,3],[4,5,6]]) arr2 = np.array([[4,2,1],[7,2,4]]) print(arr1 + arr2) print('---分隔符---') print(1/arr1) print('---分隔符---') print(arr1 > arr2) 索引与切片 list1 = list(range(10)) array1 = np.array(list_1)…
python -- 数据可视化 一.Matplotlib 绘图 1.图形对象(图形窗口) mp.figure(窗口名称, figsize=窗口大小, dpi=分辨率, facecolor=颜色) 如果"窗口名称"是第一次出现,那么就创建一个新窗口,其标题栏显示该名称,如果"窗口名称"已经出现过,那么不再创建新窗口,而只是将与该名称相对应的窗口设置为当前窗口.所谓当前窗口,就是接受后续绘图操作的窗口. mp.title(标题文本, fontsize=字体大小) mp.…
前言 Numpy是一个很强大的python科学计算库.为了机器学习的须要.想深入研究一下Numpy库的使用方法.用这个系列的博客.记录下我的学习过程. 系列: Numpy库进阶教程(二) 正在持续更新 计算逆矩阵 numpy.linalg模块包括线性代数的函数.能够用来求矩阵的逆,求解线性方程组.求特征值及求解行列式. mat函数能够用来构造一个矩阵,传进去一个专用字符串,矩阵的行与行之间用分号隔开,行内的元素用空格隔开. import numpy as np A = np.mat("0 1 2…
前言: 在学习cs231n编写课后作业代码过程中 .发现自己对计算的向量化vectorized不是很懂,编写不出代码.对numpy的库也只是停留在表面 Numpy Numpy学习库链接 1.numpy 求解方程组 $Ax=b $ 求解 \(x=A^{-1}b\) import numpy as np np.linalg.slove(A,b) # example A=np.array([[1,2,3],[4,5,6]]) b=np.transpose(np.array([[2,1]])) x=np…
欢迎关注公众号[Python开发实战], 获取更多内容! 工具-numpy numpy是使用Python进行数据科学的基础库.numpy以一个强大的N维数组对象为中心,它还包含有用的线性代数,傅里叶变换和随机数函数. 线性代数 numpy中二维的ndarray可以在Python中高效地表示矩阵,下面将介绍一些主要的矩阵运算. 导入numpy import numpy as np 矩阵转置 当秩大于等于2时,T属性相当于调用transpose()函数. m1 = np.arange(10).res…
最近在看 Faster RCNN的Matlab code,发现很多matlab技巧,在此记录: 1. conf_proposal  =  proposal_config('image_means', model.mean_image, 'feat_stride', model.feat_stride); function conf = proposal_config(varargin) % conf = proposal_config(varargin) % ------------------…
原文  http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想从新回忆下,请看看 Python Tutorial . 如果你想要运行教程中的示例,你至少需要在你的电脑上安装了以下一些软件: Python NumPy 这些是可能对你有帮助的: ipython 是一个净强化的交互Python Shell,对探索NumPy的特性非常方便. matplotlib 将允…
本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其实是2013年Mikolov开源的一款用于计算词向量的工具.关于Word2vec更多的原理性的介绍,可以参见我的另一篇博客:word2vec前世今生 在Gensim中实现word2vec模型非常简单.首先,我们需要将原始的训练语料转化成一个sentence的迭代器:每一次迭代返回的sentence是…
本課主題 Numpy 的介绍和操作实战 Series 的介绍和操作实战 DataFrame 的介绍和操作实战 Numpy 的介绍和操作实战 numpy 是 Python 在数据计算领域里很常用的模块 import numpy as np np.array([11,22,33]) #接受一个列表数据 创建 numpy array >>> import numpy as np >>> mylist = [1,2,3] >>> x = np.array(my…
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶斯这个名字读着"萌蠢"但实际上简单直接高效的方法,我们也介绍了一下贝叶斯方法的一些细节.按照老规矩…
导读:切片系列文章连续写了三篇,本文是对它们做的汇总.为什么要把序列文章合并呢?在此说明一下,本文绝不是简单地将它们做了合并,主要是修正了一些严重的错误(如自定义序列切片的部分),还对行文结构与章节衔接做了大量改动,如此一来,本文结构的完整性与内容的质量都得到了很好的保证. 众所周知,我们可以通过索引值(或称下标)来查找序列类型(如字符串.列表.元组…)中的单个元素,那么,如果要获取一个索引区间的元素该怎么办呢? 切片(slice)就是一种截取索引片段的技术,借助切片技术,我们可以十分灵活地处理…
 NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.NumPy这个词来源于两个单词-- Numerical和Python.NumPy提供了大量的库函数和操作,可以帮助程序员轻松地进行数值计算. NumPy中的ndarray是一个多维数组对象,该对象由两部分组成: 实际的数据: 描述这些数据的元数据. 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际数据. 1.创建数组 NumPy 中的数组 创建Numpy数组的不同方式 In [29]: np.array([i for…
基础知识 Python3内置函数 『Python』库安装 『流畅的Python』第1~4章_数据结构.编码 『Python』基础数据结构常见使用方法 『Python CoolBook』数据结构和算法_多变量赋值&“*”的两种用法 『Python CoolBook:Collections』数据结构和算法_collections.deque队列&yield应用 『Python CoolBook:heapq』数据结构和算法_heapq堆队列算法&容器排序 『Python CoolBook…
人们常说Python语言简单,编写简单程序时好像也确实如此.但实际上Python绝不简单,它也是一种很复杂的语言,其功能特征非常丰富,能支持多种编程风格,在几乎所有方面都能深度定制.要想用好Python,用它解决复杂问题,开发功能正确的.效率高的程序,需要很好地理解上面说明的许多高级概念和特征,还需要理解这门语言的内在性质. Python虽说是目前非常热门的一种编程语言,但有关Python编程和应用的书籍,虽不能说是汗牛充栋.铺天盖地,也是林林总总.选择很多.<程序员学Python>与其他书籍…
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关参数 输入24*24的图片 卷积->relu激活->最大池化->标准化 卷积->relu激活->标准化->最大池化 全连接:reshape尺寸->384 全连接:192->10 SoftMax 网络实现 git clone https://github.com/…
原文地址: https://www.cnblogs.com/pinard/p/9756075.html ------------------------------------------------------------------------------------------------------- 在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Le…
Numpy 和 scikit-learn 都是python常用的第三方库.numpy库可以用来存储和处理大型矩阵,并且在一定程度上弥补了python在运算效率上的不足,正是因为numpy的存在使得python成为数值计算领域的一大利器:sklearn是python著名的机器学习库,它其中封装了大量的机器学习算法,内置了大量的公开数据集,并且拥有完善的文档,因此成为目前最受欢迎的机器学习学习与实践的工具. 1. NumPy库 首先导入Numpy库 import numpy as np 1.1 nu…
作者:代码律动链接:https://zhuanlan.zhihu.com/p/36303821来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 挑战 1:引入 numpy 并查看 numpy 的版本. 要求:这是第一步,以后我们使用 numpy 时都将用别名 np. # 答案 import numpy as np print(np.__version__) #> 1.13.3 挑战 2:创建数组 要求:创建一维数组,内容为从 0 到 9. # 输入数组 arr =…
NumPy — NumPy http://www.numpy.org/ NumPy is the fundamental package for scientific computing with Python. NumPy - Wikipedia https://en.wikipedia.org/wiki/NumPy NumPy (pronounced /ˈnʌmpaɪ/ (NUM-py) or sometimes /ˈnʌmpi/[1][2] (NUM-pee)) is a library…
上面是一个简单的回归算法,下面是一个简单的二分值分类算法.从两个正态分布(N(-1,1)和N(3,1))生成100个数.所有从正态分布N(-1,1)生成的数据目标0:从正态分布N(3,1)生成的数据标为目标类1,模型算法通过sigmoid函数将这些生成的数据转换成目标类数据.换句话讲,模型算法是sigmoid(x+A),其中,A是要拟合的变量,理论上A=-1.假设,两个正态分布的均值分别是m1和m2,则达到A的取值时,它们通过-(m1+m2)/2转换成到0等距离的值. 实现如下: import…
这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项.当我们传入数据,最小化损失函数,tensorflow会在计算图中根据状态相应的调节变量. 这里先举一个简单的例子,从均值1,标准差为0.1的正态分布中随机抽样100个数,然后乘以变量A,损失函数L2正则函数,也就是实现函数X*A=target,X为100个随机数,target为10,那么A的最优结…
pythonic 风格编码 入门python好博客 进阶大纲 有趣的灵魂 老齐的教程 老齐还整理了很多精华 听说 fluent python + pro python 这两本书还不错! 元组三种遍历,有点像回字有四种写法一样...苦笑 for index in range(0,len(tuple_1)): ... print(tuple_1[index]) >>> for index in range(0,len(tuple_1)): ... print('{}--{}'.format(…
http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶…
基础部分 1.导入numpy模块 import numpy as np 2.查看numpy版本信息 print(np.__version__) numpy的主要对象的多维数组Ndarray.Numpy中维度(dimensions)叫做轴(axis),轴的个数叫做秩. 3.通过列表创建一位数组 np.array([1, 2, 3]) 4.通过列表创建一个二维数组 np.array([(1, 2, 3),(4, 5, 6)]) 5.创建全为0的二维数组 np.zeros((3,3)) 6.创建全为1…
[转载说明] 本来没有必要转载的,只是网上的版本排版不是太好,看的不舒服.所以转过来,重新排版,便于自己查看. 基础篇 NumPy的主要对象是同种元素的多维数组. 这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank). 例如,在3D空间一个点的坐标 [1, 2, 3] 是一个秩为1的数组,因为它只有一个轴.那个轴长度为3. 又例如,在以下例子中,数组的秩为2(它有两个维度)…
一.numpy的简介 numpy是Python的一种开源的数值计算扩展库.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. Numpy中包含了大量的矩阵运算,所以读者最好具有一点儿线性代数的基础. 二.numpy基本使用 1. 导…
因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog.163.com/blog/static/18993409620135271852137/ 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想重新回忆下,请看看Python Tutorial. 如果你想要运行教程中的示例,你至少需要在你的电脑上安装了以下一些软件: Python N…